如图,AB为圆O的直径,点C在圆周上(异于点A,B),直线PA垂直于圆O所在的平面,点M为线段PB的中点.有以下四个命题:
①PA∥平面MOB;②MO∥平面PAC;③OC⊥平面PAC;④平面PAC⊥平面PBC.
其中正确的命题是________(填上所有正确命题的序号).
若是两个相交平面,则在下列命题中,真命题的序号为 .(写出所有真命题的序号)
①若直线,则在平面内,一定不存在与直线平行的直线.
②若直线,则在平面内,一定存在无数条直线与直线垂直.
③若直线,则在平面内,不一定存在与直线垂直的直线.
④若直线,则在平面内,一定存在与直线垂直的直线.
在正方体ABCD-A1B1C1D1中,下面结论中正确的是________(把正确结论的序号都填上).
①BD∥平面CB1D1;②AC1⊥平面CB1D1;③AC1与底面ABCD所成角的正切值是.
如图,正四棱柱ABCD—A1B1C1D1中,AA1=2AB=4,点E在C1C上,且C1E=3EC.
(1)证明A1C⊥平面BED;
(2)求二面角A1-DE-B的余弦值.
如图,长方体中,是边长为的正方形,与平面所成的角为,则棱的长为_______;二面角的大小为_______.
在四面体ABCD中,有如下结论:
①若,则;
②若分别是的中点,则的大小等于异面直线与所成角的大小;
③若点是四面体外接球的球心,则在面上的射影为的外心;
④若四个面是全等的三角形,则为正四面体.
其中所有正确结论的序号是 .
给出四个命题:
①平行于同一平面的两个不重合的平面平行;
②平行于同一直线的两个不重合的平面平行;
③垂直于同一平面的两个不重合的平面平行;
④垂直于同一直线的两个不重合的平面平行;
其中真命题的序号是________.
如图,在三棱柱中,四边形是边长为4的正方形,平面⊥平面,.
(Ⅰ)求证:⊥平面;
(Ⅱ)若点是线段的中点,请问在线段是否存在点,使得面?若存在,请说明点的位置,若不存在,请说明理由;
(Ⅲ)(本小问只理科学生做)求二面角的大小.
已知空间直角坐标系o﹣xyz中的点A的坐标为(1,1,1),平面α过点A且与直线OA垂直,动点P(x,y,z)是平面α内的任一点,则点P的坐标满足的条件是 .
设l,m是不同的直线,α,β,γ是不同的平面,则下列命题正确的是______________.
①若l⊥m,m⊥α,则l⊥α或 l∥α
②若l⊥γ,α⊥γ,则l∥α或 lα
③若l∥α,m∥α,则l∥m或 l与m相交
④若l∥α,α⊥β,则l⊥β或lβ
如图,四边形ABCD和ADPQ均为正方形,它们所在的平面互相垂直,动点M在线段PQ上,E,F分别为AB,BC的中点,设异面直线EM与AF所成的角为,则的最大值为 .
是异面直线,下面四个命题:
①过至少有一个平面平行于;
②过至少有一个平面垂直于;
③至多有一条直线与都垂直;
④至少有一个平面与都平行.
其中正确命题的个数是
试题篮
()