优题课 - 聚名师,上好课(www.youtike.com)
  首页 / 试题库 / 高中数学试题 / 正交试验设计方法 / 解答题
高中数学

现有三种基本电子模块,电流能通过的概率都是P,电流能否通过各模块相互独立.已知中至少有一个能通过电流的概率为0.999.现由该电子模块组装成某预警系统M(如图所示),针对系统M而言,只要有电流通过该系统就能正常工作.

(1)求P值
(II)求预警系统M正常工作的概率

  • 题型:未知
  • 难度:未知

设每个工作日甲、乙、丙、丁4人需使用某种设备的概率分别为各人是否需使用设备相互独立.
(1)求同一工作日至少3人需使用设备的概率;
(2)表示同一工作日需使用设备的人数,求的数学期望.

  • 题型:未知
  • 难度:未知

江西某品牌豆腐食品是经过三道工序加工而成的,工序的产品合格率分别为.已知每道工序的加工都相互独立,三道工序加工的产品都为合格时产品为一等品;恰有两次合格为二等品;其它的为废品,不进入市场.
(1)生产一袋豆腐食品,求产品为废品的概率;
(2)生产一袋豆腐食品,设为三道加工工序中产品合格的工序数,求的分布列和数学期望.

  • 题型:未知
  • 难度:未知

(本题分12分)
从装有2只红球,2只白球和1只黑球的袋中逐一取球,已知每只球被抽取的可能性相同.
(Ⅰ)若抽取后又放回,抽取3次,求恰好抽到2次为红球的概率;
(Ⅱ)若抽取后不放回,设抽完红球所需的次数为,求的分布列及期望.

  • 题型:未知
  • 难度:未知

(本小题满分12分)
已知射手甲射击一次,击中目标的概率是
(1)求甲射击5次,恰有3次击中目标的概率;
(2)假设甲连续2次未击中目标,则停止其射击,求甲恰好射击5次后,被停止射击的概率.

  • 题型:未知
  • 难度:未知

两个人射击,甲射击一次中靶概率是,乙射击一次中靶概率是
(Ⅰ)两人各射击一次,中靶至少一次就算完成目标,则完成目标概率是多少?
(Ⅱ)两人各射击2次,中靶至少3次就算完成目标,则完成目标的概率是多少?
(Ⅲ)两人各射击5次,是否有99%的把握断定他们至少中靶一次?

  • 题型:未知
  • 难度:未知

2010年世博会于5月1日在中国上海隆重开幕,甲、乙、丙三人打算利用周六去游览,由于时间有限,三人商定在已圈定的10个国家馆中各自随机选择一个国家馆游览(选择每个国家馆的可能性相同).
(Ⅰ)求甲、乙、丙三人同时游览同一个国家馆的概率;
(Ⅱ)求甲、乙、丙三人中至少有两人同时游览同一个国家馆的概率.

  • 题型:未知
  • 难度:未知

为考察某种药物预防禽流感的效果,进行动物家禽试验,调查了100个样本,统计结果为:服用药的共有60个样本,服用药但患病的仍有20个样本,没有服用药且未患病的有20个样本.
(1)根据所给样本数据完成下面2×2列联表;
(2)请问能有多大把握认为药物有效?

 
不得禽流感
得禽流感
总计
服药
 
 
 
不服药
 
 
 
总计
 
 
 

 

  • 题型:未知
  • 难度:未知

在乒乓球比赛中,甲与乙以“五局三胜”制进行比赛,根据以往比赛情况,甲在每一局胜乙的概率均为 .已知比赛中,乙先赢了第一局,求:
(Ⅰ)甲在这种情况下取胜的概率;
(Ⅱ)设比赛局数为X,求X的分布列及数学期望(均用分数作答)。

  • 题型:未知
  • 难度:未知

(本小题满分12分)某厂生产的产品在出厂前都要做质量检测,每一件一等品都能通过
检测,每一件二等品通过检测的概率为.现有10件产品,其中6件是一等品,4件是二等
品.
(Ⅰ) 随机选取1件产品,求能够通过检测的概率;
(Ⅱ) 随机选取3件产品,其中一等品的件数记为,求的分布列;
(Ⅲ) 随机选取3件产品,求这三件产品都不能通过检测的概率.

  • 题型:未知
  • 难度:未知

甲、乙两人独立地破译1个密码,他们能译出密码的概率分别为,求
(1)恰有1人译出密码的概率;
(2)若达到译出密码的概率为,至少需要多少乙这样的人.

  • 题型:未知
  • 难度:未知

已知一个口袋中装有个红球()和个白球,从中有放回地连续摸三次,每次摸出两个球,若两个球颜色不同则为中奖,否则不中奖.
(1)当时,设三次摸球中(每次摸球后放回)中奖的次数为,求的分布列;
(2)记三次摸球中(每次摸球后放回)恰有两次中奖的概率为,当取多少时,最大.

  • 题型:未知
  • 难度:未知

一射击测试每人射击二次,甲每击中目标一次记10分,没有击中记0分,每次击中目标的概率为;乙每击中目标一次记20分,没有击中记0分,每次击中目标的概率为.
(Ⅰ)求甲得10分的概率;
(Ⅱ)求甲乙两人得分相同的概率.

  • 题型:未知
  • 难度:未知

现有甲乙丙丁四人依次抽奖,抽后放回,另一个人再抽,求至少有两人获奖的概率.

  • 题型:未知
  • 难度:未知

)某篮球队与其他6支篮球队依次进行6场比赛,每场均决出胜负,设这支篮球队与其他篮球队比赛胜场的事件是独立的,并且胜场的概率是.
(1)求这支篮球队首次胜场前已经负了两场的概率;
(2)求这支篮球队在6场比赛中恰好胜了3场的概率;
(3)求这支篮球队在6场比赛中胜场数的期望和方差.

来源:概率统计测试题
  • 题型:未知
  • 难度:未知

高中数学正交试验设计方法解答题