优题课 - 聚名师,上好课(www.youtike.com)
  首页 / 试题库 / 高中数学试题 / 平面解析几何的产生──数与形的结合
高中数学

本题共有3个小题,第1小题满分4分,第2小题满分6分,第3小题满分6分.
已知椭圆),其左、右焦点分别为,且成等比数列.
(1)求的值.
(2)若椭圆的上顶点、右顶点分别为,求证:
(3)若为椭圆上的任意一点,是否存在过点的直线,使轴的交点满足?若存在,求直线的斜率;若不存在,请说明理由.

  • 题型:未知
  • 难度:未知

(本题满分16分;第(1)小题5分,第(2)小题5分,第(3)小题6分)
为坐标平面上的点,直线为坐标原点)与抛物线交于点(异于).
(1)      若对任意,点在抛物线上,试问当为何值时,点在某一圆上,并求出该圆方程
(2)      若点在椭圆上,试问:点能否在某一双曲线上,若能,求出该双曲线方程,若不能,说明理由;
(3)      对(1)中点所在圆方程,设是圆上两点,且满足,试问:是否存在一个定圆,使直线恒与圆相切.

  • 题型:未知
  • 难度:未知

(本小题满分12分)
已知点和直线,作垂足为Q,且
(Ⅰ)求点P的轨迹方程;
(Ⅱ)过点C的直线m与点P的轨迹交于两点,若的面积为,求直线的方程.

来源:
  • 题型:未知
  • 难度:未知

(本小题满分14分)
椭圆的离心率为,长轴端点与短轴端点间的距离为
(I)求椭圆的方程;
(II)设过点的直线与椭圆交于两点,为坐标原点,若
为直角三角形,求直线的斜率。

来源:
  • 题型:未知
  • 难度:未知

(本小题满分13分)
过圆上一点A(4,6)作圆的一条动弦AB,点P为弦AB的中点.
(Ⅰ)求点P的轨迹方程;
(Ⅱ)设点P关于点D(9,0)的对称点为E,O为坐标原点,将线段OP绕原点O依逆时针方向旋转90°后,所得线段为OF,求|EF|的取值范围.

  • 题型:未知
  • 难度:未知

正六边形ABCDEF的两个顶点A、D为椭圆的两个焦点,其余4个顶点在椭圆上,则该椭圆的离心率是                                  ()
A.                   B.
C.                   D.

  • 题型:未知
  • 难度:未知

在极坐标系中,圆C:关于直线l对称的充要条件是                                                                   ()

A.k=1 B.k=-1 C.k=±1 D.k=0
  • 题型:未知
  • 难度:未知

(本小题满分13分)
已知动点P到直线的距离比它到点F的距离大.
(Ⅰ)求动点P的轨迹方程;
(Ⅱ)若点P的轨迹上不存在两点关于直线l对称,求实数的取值范围.

  • 题型:未知
  • 难度:未知

如图,F是定直线l外的一个定点,C是l上的动点,有下列结论:若以C为圆心,CF为半径的圆与l交于A、B两点,过A、B分别作l的垂线与圆

C过F的切线交于点P和点Q,则P、Q必在以F为焦点,l为准线的同一条抛物线上.
(Ⅰ)建立适当的坐标系,求出该抛物线的方程;
(Ⅱ)对以上结论的反向思考可以得到另一个命题:
“若过抛物线焦点F的直线与抛物线交于P、Q两点,
则以PQ为直径的圆一定与抛物线的准线l相切”请
问:此命题是否正确?试证明你的判断;
(Ⅲ)请选择椭圆或双曲线之一类比(Ⅱ)写出相应的命题并
证明其真假.(只选择一种曲线解答即可,若两种都选,则以第一选择为评分依据)

  • 题型:未知
  • 难度:未知

已知两点,点为坐标平面内的动点,且满足.
(Ⅰ)求点的轨迹的方程;
(Ⅱ)设过点的直线斜率为,且与曲线相交于点,若两点只在第二象限内运动,线段的垂直平分线交轴于点,求点横坐标的取值范围.

  • 题型:未知
  • 难度:未知

已知椭圆的中心在原点,焦点在轴上,椭圆上的点到焦点的距离的最小值为,离心率为
(1)求椭圆的方程;
(2)过点作直线两点,试问:在轴上是否存在一个定点,使为定值?若存在,求出这个定点的坐标;若不存在,请说明理由.

  • 题型:未知
  • 难度:未知

已知抛物线焦点恰好是双曲线的右焦点,且两条曲线交点的连线过点,则该双曲线的离心率为          .

  • 题型:未知
  • 难度:未知

求圆上的点到直线的距离的最小值和最大值.

  • 题型:未知
  • 难度:未知

已知双曲线的离心率,左、右焦点分别为,左准线为,能否在双曲线的左支上找到一点,使得的距离的等比中项?

  • 题型:未知
  • 难度:未知

高中数学平面解析几何的产生──数与形的结合试题