优题课 - 聚名师,上好课(www.youtike.com)
  首页 / 试题库 / 高中数学试题 / 平面解析几何的产生──数与形的结合 / 解答题
高中数学

如图,已知是△的角平分线,∠,求证

  • 题型:未知
  • 难度:未知

(本小题满分14分)
设圆满足条件:(1)截y轴所得的弦长为2;(2)被x轴分成两段弧,其弧长的比为3︰1;(3)圆心到直线的距离为.求这个圆的方程.

  • 题型:未知
  • 难度:未知

的直线分别交轴,轴正半轴于,求△周长和面积最小值

来源:解析几何
  • 题型:未知
  • 难度:未知

已知分别是双曲线的左、右焦点,过斜率为的直线交双曲线的左、右两支分别于两点,过且与垂直的直线交双曲线的左、右两支分别于两点。
(1)求的取值范围;
求四边形面积的最小值。

  • 题型:未知
  • 难度:未知

建立适当的坐标系,用坐标法解决下列问题:
已知隧道的截面是半径为4m的半圆,车辆只能在道路中心线一侧行驶,一辆宽为2.7m,高为3m的货车能不能驶入这个隧道?

 

  • 题型:未知
  • 难度:未知

在直角坐标系中,点到两点的距离之和等于,设点的轨迹为
(1)求曲线的方程;
(2)过点作两条互相垂直的直线分别与曲线交于
①以线段为直径的圆过能否过坐标原点,若能求出此时的值,若不能说明理由;
②求四边形面积的取值范围。

来源:2009—2010学年度山东省高三理科下学期数学单元测试
  • 题型:未知
  • 难度:未知

设圆为坐标原点
(I)若直线过点,且圆心到直线的距离等于1,求直线的方程;
(II)已知定点,若是圆上的一个动点,点满足,求动点的轨迹方程。

  • 题型:未知
  • 难度:未知

已知曲线的极坐标方程为,直线的参数方程是:  .
(Ⅰ)求曲线的直角坐标方程,直线的普通方程;
(Ⅱ)求曲线与直线交与两点,求长.

  • 题型:未知
  • 难度:未知

已知动圆过定点P(1,0),且与定直线相切,点C上.
(1)求动圆圆心的轨迹M的方程;
(2)设过点P,且斜率为-的直线与曲线M相交于AB两点,
①求线段AB的长;
②问:△ABC能否为正三角形?若能,求点C的坐标;若不能,说明理由;

来源:解析几何
  • 题型:未知
  • 难度:未知

已知动点(x, y) 在曲线C上,将此点的纵坐标变为原来的2倍,对应的横坐标不变,得到的点满足方程;定点M(2,1),平行于OM的直线在y轴上的截距为m(m≠0),直线与曲线C交于A、B两个不同点.
(1)求曲线的方程;                  (2)求m的取值范围.

  • 题型:未知
  • 难度:未知

已知方程的方程,直线
(1)求的取值范围; (2)若圆与直线交于PQ两点,且以PQ为直径的圆恰过坐标原点,求实数m的值.

  • 题型:未知
  • 难度:未知

以直角坐标系的原点为极点,轴的正半轴为极轴,已知点的直角坐标为,点的极坐标为,若直线过点,且倾斜角为,圆为 圆心、为半径。
(I) 写出直线的参数方程和圆的极坐标方程;
(Ⅱ)试判定直线和圆的位置关系。

  • 题型:未知
  • 难度:未知

(本小题满分14分)
已知点,()是曲线C上的两点,点关于轴对称,直线分别交轴于点和点
(Ⅰ)用分别表示;
(Ⅱ)某同学发现,当曲线C的方程为:时,是一个定值与点的位置无关;请你试探究当曲线C的方程为:时, 的值是否也与点M、NP的位置无关;
(Ⅲ)类比(Ⅱ)的探究过程,当曲线C的方程为时,探究经加、减、乘、除的某一种运算后为定值的一个正确结论.(只要求写出你的探究结论,无须证明).

  • 题型:未知
  • 难度:未知

已知椭圆的离心率为
直线与以原点为圆心、以椭圆的短半轴长为半径的圆相切。
(Ⅰ)求椭圆的方程;
(Ⅱ)设椭圆的左焦点为F1,右焦点为F2,直线过点F1,且垂直于椭圆的长轴,动直
线垂直于点P,线段PF2的垂直平分线交于点M,求点M的轨迹C2的方程;
(Ⅲ)若AC、BD为椭圆C1的两条相互垂直的弦,垂足为右焦点F2,求四边形ABCD的面积
的最小值.

  • 题型:未知
  • 难度:未知

已知以点为圆心的圆与轴交于点,与轴交于点,其中为原点。
(Ⅰ)求的面积;
(Ⅱ)设直线与圆交于点,若,求圆的方程。

  • 题型:未知
  • 难度:未知

高中数学平面解析几何的产生──数与形的结合解答题