已知椭圆的对称点落在直线)上,且椭圆C的离心率为
(1)求椭圆C的方程;
(2)设A(3,0),M、N是椭圆C上关于x轴对称的任意两点,连结AN交椭圆于另一点E,求证直线ME与x轴相交于定点.
)
已知、是椭圆的左、右焦点,为坐标原点,点在椭圆上,线段与轴的交点满足;
(Ⅰ)求椭圆的标准方程;
(Ⅱ)过椭圆的右焦点作直线l交椭圆于A、B两点,交y轴于M点,若
,求的值.
在平面直角坐标系中,O为坐标原点,给定两点A(1,0),B(0,—2),点C满足,其中,且,
(1)求点C的轨迹方程;
(2)设点C的轨迹与双曲线(a>0,b>0)相交于M、N两点,且以MN为直径的圆经过原点,求证:为定值;
(3)在(2)的条件下,若双曲线的离心率不大于,求双曲线实轴长的取值范围。
在极坐标系中,已知圆C的圆心坐标为(3,),半径为1,点Q在圆C上运动,O为极点。
(1)求圆C的极坐标方程;
(2)若点在直线OQ上运动,且满足,求动点P的轨迹方程。
抛物线的准线的方程为,该抛物线上的每个点到准线的距离都与到定点的距离相等,圆是以为圆心,同时与直线和相切的圆,
(Ⅰ)求定点的坐标;
(Ⅱ)是否存在一条直线同时满足下列条件:
①分别与直线和交于、两点,且中点为;
②被圆截得的弦长为2.
将圆上的点的横坐标保持不变,纵坐标变为原来的倍,得到曲线.设直线与曲线相交于、两点,且,其中是曲线与轴正半轴的交点.
(Ⅰ)求曲线的方程;
(Ⅱ)证明:直线的纵截距为定值.
已知过定点,圆心在抛物线:上运动,为圆在轴上所截得的弦.
⑴当点运动时,是否有变化?并证明你的结论;
⑵当是与的等差中项时,
试判断抛物线的准线与圆的位置关系,
并说明理由。
(本小题满分15分)如图,已知圆O:x2+y2=2交x轴于A,B两点,曲线C是以AB为长轴,离心率为的椭圆,其右焦点为F.若点P(-1,1)为圆O上一点,连结PF,过原点O作直线PF的垂线交椭圆C的右准线l于点Q.(1)求椭圆C的标准方程;
(2)证明:直线PQ与圆O相切.
(本小题满分12分)
已知点,点在轴上,点在轴的正半轴上,点在直线上,且
满足.
(Ⅰ)当点在轴上移动时,求点的轨迹的方程;
(Ⅱ)设、为轨迹上两点,且>1, >0,,求实数,
使,且.
试题篮
()