优题课 - 聚名师,上好课(www.youtike.com)
  首页 / 试题库 / 高中数学试题 / 平面解析几何的产生──数与形的结合 / 解答题
高中数学


已知椭圆的对称点落在直线)上,且椭圆C的离心率为
(1)求椭圆C的方程;
(2)设A(3,0),MN是椭圆C上关于x轴对称的任意两点,连结AN交椭圆于另一点E,求证直线MEx轴相交于定点.

  • 题型:未知
  • 难度:未知


已知是椭圆的左、右焦点,为坐标原点,点在椭圆上,线段轴的交点满足
(Ⅰ)求椭圆的标准方程;
(Ⅱ)过椭圆的右焦点作直线l交椭圆于AB两点,交y轴于M点,若
,求的值.

  • 题型:未知
  • 难度:未知

在平面直角坐标系中,O为坐标原点,给定两点A(1,0),B(0,—2),点C满足,其中,且
(1)求点C的轨迹方程;
(2)设点C的轨迹与双曲线(a>0,b>0)相交于M、N两点,且以MN为直径的圆经过原点,求证:为定值;
(3)在(2)的条件下,若双曲线的离心率不大于,求双曲线实轴长的取值范围。

来源:圆锥曲线
  • 题型:未知
  • 难度:未知

已知点是平面内一动点,直线斜率之积为
(Ⅰ)求动点的轨迹的方程;
(Ⅱ)过点作直线与轨迹交于两点,线段的中点为,求直线的斜率的取值范围。

  • 题型:未知
  • 难度:未知

已知,内有一动点PMN,且四边形PMON的面积等于4,今以O为原点,的平分线为极轴(如图),求动点P的轨迹方程。

  • 题型:未知
  • 难度:未知

在极坐标系中,已知圆C的圆心坐标为(3,),半径为1,点Q在圆C上运动,O为极点。
(1)求圆C的极坐标方程;
(2)若点在直线OQ上运动,且满足,求动点P的轨迹方程。

  • 题型:未知
  • 难度:未知

如图,在极坐标系中,,求直线的极坐标方程。

  • 题型:未知
  • 难度:未知

的三个顶点是
(1)求BC边的高所在直线方程; (2)求的面积S

  • 题型:未知
  • 难度:未知

抛物线的准线的方程为,该抛物线上的每个点到准线的距离都与到定点的距离相等,圆是以为圆心,同时与直线相切的圆,
(Ⅰ)求定点的坐标;
(Ⅱ)是否存在一条直线同时满足下列条件:
分别与直线交于两点,且中点为
被圆截得的弦长为2.

  • 题型:未知
  • 难度:未知

将圆上的点的横坐标保持不变,纵坐标变为原来的倍,得到曲线.设直线与曲线相交于两点,且,其中是曲线轴正半轴的交点.
(Ⅰ)求曲线的方程;
(Ⅱ)证明:直线的纵截距为定值.

  • 题型:未知
  • 难度:未知

已知过定点,圆心在抛物线上运动,为圆轴上所截得的弦.
⑴当点运动时,是否有变化?并证明你的结论;
⑵当的等差中项时,
试判断抛物线的准线与圆的位置关系,
并说明理由。

  • 题型:未知
  • 难度:未知

已知中,顶点的平分线的方程是.求顶点的坐标.

  • 题型:未知
  • 难度:未知

(本小题满分15分)如图,已知圆Ox2+y2=2交x轴于AB两点,曲线C是以AB为长轴,离心率为的椭圆,其右焦点为F.若点P(-1,1)为圆O上一点,连结PF,过原点O作直线PF的垂线交椭圆C的右准线l于点Q.(1)求椭圆C的标准方程;
(2)证明:直线PQ与圆O相切.

  • 题型:未知
  • 难度:未知

(本小题满分12分)
已知点,点轴上,点轴的正半轴上,点在直线上,且
满足.
(Ⅰ)当点轴上移动时,求点的轨迹的方程;
(Ⅱ)设为轨迹上两点,且>1, >0,,求实数
使,且.

来源:2009年高考桂林市、崇左市、贺州市、防城港市联合调研考试文22
  • 题型:未知
  • 难度:未知

已知椭圆的离心率为,直线:与以原点为圆心、以椭圆的短半轴长为半径的圆相切.
(I)求椭圆的方程;
(II)设椭圆的左焦点为,右焦点,直线过点且垂直于椭圆的长轴,动直线垂直于点,线段垂直平分线交于点,求点的轨迹的方程;
(III)设轴交于点,不同的两点上,且满足的取值范围.

  • 题型:未知
  • 难度:未知

高中数学平面解析几何的产生──数与形的结合解答题