优题课 - 聚名师,上好课(www.youtike.com)
  首页 / 试题库 / 高中数学试题 / 二次剩余
高中数学

“地沟油”严重危害了人民群众的身体健康,某企业在政府部门的支持下,进行技术攻关,新上了一种从“食品残渣”中提炼出生物柴油的项目,经测算,该项目月处理成本y(元)与月处理量x(吨)之间的函数关系可以近似的表示为:

且每处理一吨“食品残渣”,可得到能利用的生物柴油价值为200元,若该项目不获利,政府将补贴.
(1)当x∈[200,300]时,判断该项目能否获利?如果获利,求出最大利润;如果不获利,则政府每月至少需要补贴多少元才能使该项目不亏损;
(2)该项目每月处理量为多少吨时,才能使每吨的平均处理成本最低?

  • 题型:未知
  • 难度:未知

“地沟油”严重危害了人民群众的身体健康,某企业在政府部门的支持下,进行技术攻关,新上了一种从“食品残渣”中提炼出生物柴油的项目,经测算,该项目月处理成本y(元)与月处理量x(吨)之间的函数关系可以近似的表示为:

且每处理一吨“食品残渣”,可得到能利用的生物柴油价值为200元,若该项目不获利,政府将补贴.
(1)当x∈[200,300]时,判断该项目能否获利?如果获利,求出最大利润;如果不获利,则政府每月至少需要补贴多少元才能使该项目不亏损;
(2)该项目每月处理量为多少吨时,才能使每吨的平均处理成本最低?

  • 题型:未知
  • 难度:未知

已知二次函数在区间上有最大值,求实数的值

  • 题型:未知
  • 难度:未知

.(本题满分18分)
本题共有3个小题,第1小题满分4分,第2小题满分6分,第3小题满分8分.
设二次函数,对任意实数,有恒成立;数列满足.
(1)求函数的解析式和值域;
(2)试写出一个区间,使得当时,数列在这个区间上是递增数列,
并说明理由;
(3)已知,是否存在非零整数,使得对任意,都有
 恒成立,若存在,
求之;若不存在,说明理由.

  • 题型:未知
  • 难度:未知

、已知二次函数y=f(x)的图像为开口向下的抛物线,且对任意x∈R都有f(1+x)=f(1-x).若向量,则满足不等式m的取值范围              。 

  • 题型:未知
  • 难度:未知

(本小题满分12分)已知二次函数最大值为,且
⑴求的解析式;
⑵求上的最值.

  • 题型:未知
  • 难度:未知

已知实数满足,则的最小值为___.

  • 题型:未知
  • 难度:未知

(本小题满分13分)已知函数f(x)=-x2+2ax+1-a在x∈[0,1]时有最大值2,求a的值.

  • 题型:未知
  • 难度:未知

已知函数).
(1)若的定义域和值域均是,求实数的值;
(2)若对任意的,总有,求实数的取值范围.

  • 题型:未知
  • 难度:未知

如图,长为20m的铁丝网,一边靠墙,围成三个大小相等、紧紧相连的长方形,那么长方形长、宽、各为多少时,三个长方形的面积和最大?

  • 题型:未知
  • 难度:未知

(本小题满分12分)
设平面直角坐标系中,设二次函数的图象与两坐标轴有三个交点,经过这三个交点的圆记为.求:
(Ⅰ)求实数的取值范围;
(Ⅱ)求圆的方程;
(Ⅲ)问圆是否经过某定点(其坐标与b 无关)?请证明你的结论.

  • 题型:未知
  • 难度:未知

(本小题12分)定义运算:
(1)若已知,解关于的不等式
(2)若已知,对任意,都有,求实数的取值范围。

  • 题型:未知
  • 难度:未知

已知二次函数的值域为,则的最小值为        .

  • 题型:未知
  • 难度:未知

设函数,若 

(1)求函数的解析式;
(2)画出函数的图象,并说出函数的单调区间;
(3)若,求相应的值.

  • 题型:未知
  • 难度:未知

在自然条件下,某草原上野兔第n年年初的数量记为xn,该年的增长量yn和 xn的乘积成正比,比例系数为,其中m是与n无关的常数,且x1<m,
(1)证明:;
(2)用 xn表示xn+1;并证明草原上的野兔总数量恒小于m.

  • 题型:未知
  • 难度:未知

高中数学二次剩余试题