(本小题满分12分)
设平面直角坐标系中,设二次函数的图象与两坐标轴有三个交点,经过这三个交点的圆记为.求:
(Ⅰ)求实数的取值范围;
(Ⅱ)求圆的方程;
(Ⅲ)问圆是否经过某定点(其坐标与b 无关)?请证明你的结论.
在自然条件下,某草原上野兔第n年年初的数量记为xn,该年的增长量yn和 xn与的乘积成正比,比例系数为,其中m是与n无关的常数,且x1<m,
(1)证明:;
(2)用 xn表示xn+1;并证明草原上的野兔总数量恒小于m.
经市场调查,某种商品在过去50天的销售量和价格均为销售时间t(天)的函数,且销售量近似地满足f(t)=-2t+200(1≤t≤50,t∈N).前30天价格为g(t)=t+30(1≤t≤30,t∈N),后20天价格为g(t)=45(31≤t≤50,t∈N).
(1)写出该种商品的日销售额S与时间t的函数关系;
(2)求日销售额S的最大值.
关于函数y= log(x-2x+3)有以下4个结论:其中正确的有 .
① 定义域为(- ; ② 递增区间为;
③ 最小值为1; ④ 图象恒在轴的上方.
已知函数
(1)若函数在的单调递减区间(—∞,2],求函数在区间[3,5]上的最大值.
(2)若函数在在单区间(—∞,2]上是单调递减,求函数的最大值.
(本小题满分15分)
已知二次函数满足条件:
①当时,,且;
②当时,;
③在R上的最小值为0
(1)求的解析式;
(2)求最大的m(m>1),使得存在,只要,就有.
试题篮
()