优题课 - 聚名师,上好课(www.youtike.com)
  首页 / 试题库 / 高中数学试题 / 二次剩余
高中数学

(12分) 若二次函数f(x)=ax2+bx+c(a≠0)的图象关于y轴对称,
且f(-2)>f(3),设m>-n>0.
(1) 试证明函数f(x)在(0,+∞)上是减函数;
(2) 试比较f(m)和f(n)的大小,并说明理由.

  • 题型:未知
  • 难度:未知

已知点,点在曲线:上.
(1)若点在第一象限内,且,求点的坐标;
(2)求的最小值.

  • 题型:未知
  • 难度:未知

若二次函数满足,且.(1)求的解析式;(2)若在区间上,不等式恒成立,求实数的取值范围.

  • 题型:未知
  • 难度:未知

已知点,点在曲线:上.
(1)若点在第一象限内,且,求点的坐标;
(2)求的最小值.

  • 题型:未知
  • 难度:未知

已知抛物线
(1)若求该抛物线与轴公共点的坐标;
(2)若且当时,抛物线与轴有且只有一个公共点,求c的取值范围;
(3)若时,时,试判断当时,抛物线与轴是否有公共点?若有,请证明你的结论;若没有,说明理由.

  • 题型:未知
  • 难度:未知

若二次函数的图象和直线无交点,现有下列结论:
①方程一定没有实数根;
②若,则不等式对一切实数x都成立;
③若,则必存在实数,使;
④函数的图象与直线一定没有交点,
其中正确的结论是____________(写出所有正确结论的编号).

  • 题型:未知
  • 难度:未知

下面图像反映的是甲、乙两人以每分钟80米的速度从公司出发步行到火车站乘车的过程.在去火车站的途中,甲突然发现忘带预购的火车票,于是立刻以同样的速度返回公司,然后乘出租车赶往火车站,途中与乙相遇后,带上乙一同到火车站(忽略停顿所需时间),结果到火车站的时间比预计步行到火车站的时间早到了3分钟.
⑴甲、乙离开公司        分钟时发现忘记带火车票;图中甲、乙预计步行到火车站时路程s与时
间t的函数解析式为          (不要求写自变量的取值范围)
⑵求出图中出租车行驶时路程s与时间t的函数解析式(不要求写自变量的取值范围);
⑶求公司到火车站的距离.

  • 题型:未知
  • 难度:未知

二次函数的图象如图所示,是图象上的一点,且,则的值为:

A.-2 B.-1 C. D.
  • 题型:未知
  • 难度:未知

已知一元二次不等式的解集为{,则的解集为    .

  • 题型:未知
  • 难度:未知

(本小题满分12分)
已知函数.
(1)若的定义域和值域均是,求实数的值;
(2)若在区间上是减函数,且对任意的,总有,求实数的取值范围.

  • 题型:未知
  • 难度:未知

已知函数f(x)=-x2+2ax+1-a在x∈[0,1]时有最大值2,求a的值.

  • 题型:未知
  • 难度:未知

若函数)在上的最大值为23,求a的值.

  • 题型:未知
  • 难度:未知

若扇形的半径为R,所对圆心角为,扇形的周长为定值c,则这个扇形的最大面积为___.

  • 题型:未知
  • 难度:未知

已知二次函数的图像关于直线对称,且在轴上截得的线段长为2.若的最小值为,求:
(1)函数的解析式;
(2)函数上的最小值

  • 题型:未知
  • 难度:未知

已知函数有两个极值点,且,则(  )

A. B.
C. D.
  • 题型:未知
  • 难度:未知

高中数学二次剩余试题