优题课 - 聚名师,上好课(www.youtike.com)
  首页 / 试题库 / 高中数学试题 / 第二数学归纳法
高中数学

用数学归纳法证明不等式成立,其的初始值至少应为 (      )

A.7 B.8 C.9 D.10
  • 题型:未知
  • 难度:未知

用数学归纳法证明)时,从“n=”到“n=”的证明,左边需增添的代数式是___________. 

  • 题型:未知
  • 难度:未知

用数学归纳法证明1++…+(,),在验证成立时,左式是____.

  • 题型:未知
  • 难度:未知

证明:

  • 题型:未知
  • 难度:未知

已知数列{an}满足a1=2,an+1 (n∈N*),则a3=________,a1·a2·a3·…·a2014=________.

  • 题型:未知
  • 难度:未知

用数学归纳法证明1+2+3+…+n2,则当n=k+1时左端应在n=k的基础上加上(  )

A.k2+1
B.(k+1)2
C.
D.(k2+1)+(k2+2)+…+(k+1)2
  • 题型:未知
  • 难度:未知

若f(n)=12+22+32+…+(2n)2,则f(k+1)与f(k)的递推关系式是________.

  • 题型:未知
  • 难度:未知

在数列{an}中,an=1-+…+,则ak+1等于(  )

A.ak B.ak
C.ak D.ak
  • 题型:未知
  • 难度:未知

平面内有n条直线,最多可将平面分成f(n)个区域,则f(n)的表达式为(  )

A.n+1 B.2n
C. D.n2+n+1
  • 题型:未知
  • 难度:未知

某个命题与自然数n有关,若n=k(k∈N*)时命题成立,那么可推得当n=k+1时该命题也成立,现已知n=5时,该命题不成立,那么可以推得(  )

A.n=6时该命题不成立 B.n=6时该命题成立
C.n=4时该命题不成立 D.n=4时该命题成立
  • 题型:未知
  • 难度:未知

用数学归纳法证明1+2+3+…+(2n+1)=(n+1)(2n+1)时,从n=k到n=k+1,左边需增添的代数式是(  )

A.2k+2 B.2k+3
C.2k+1 D.(2k+2)+(2k+3)
  • 题型:未知
  • 难度:未知

用数学归纳法证明1++…+> (n∈N*)成立,其初始值至少应取(  )

A.7 B.8 C.9 D.10
  • 题型:未知
  • 难度:未知

利用数学归纳法证明不等式1+<f(n) (n≥2,)的过程中,由n=k变到n=k+1时,左边增加了(   )

A.1项 B.k项 C. D.
  • 题型:未知
  • 难度:未知

在数列{}中,,且
(1)求的值;
(2)猜测数列{}的通项公式,并用数学归纳法证明。

  • 题型:未知
  • 难度:未知

航空母舰“辽宁舰”将进行一次编队配置科学实验,要求2艘攻击型核潜艇一前一后,2艘驱逐舰和2艘护卫舰分列左、右,同侧不能都是同种舰艇,则舰艇分配方案的方法数为________.(用数字作答)

  • 题型:未知
  • 难度:未知

高中数学第二数学归纳法试题