观察下列等式
第一个式子
第二个式子
第三个式子
第四个式子
照此规律下去
(Ⅰ)写出第个等式;
(Ⅱ)你能做出什么一般性的猜想?请用数学归纳法证明猜想.
在数列{an}中,a1=,an+1=,求a2、a3、a4的值,由此猜想数列{an}的通项公式,并用数学归纳法证明你的猜想.
已知m,n为正整数.
(Ⅰ)用数学归纳法证明:当x>-1时,;
(Ⅱ)对于n≥6,已知,求证,m=1,1,2…,n;
(Ⅲ)求出满足等式的所有正整数n.
设数列{an}满足a1=3,an+1=an2-2nan+2,n=1,2,3,…
(1)求a2,a3,a4的值,并猜想数列{an}的通项公式(不需证明);
(2)记Sn为数列{an}的前n项和,试求使得Sn<2n成立的最小正整数n,并给出证明.
设是一个自然数,是的各位数字的平方和,定义数列:是自然数,(,).
(1)求,;
(2)若,求证:;
(3)求证:存在,使得.
设是一个自然数,是的各位数字的平方和,定义数列:是自然数,(,).
(1)求,;
(2)若,求证:;
(3)当时,求证:存在,使得.
已知,,.
(1)当时,试比较与的大小关系;
(2)猜想与的大小关系,并给出证明.
试题篮
()