分别指出由下列命题构成的“pq”、“pq”、“p”形式的命题的真假.
(1)p:4∈{2,3},q:2∈{2,3};
(2)p:1是奇数,q:1是质数;
(3)p:0∈,q:{x|x2-3x-5<0}R;
(4)p:5≤5,q:27不是质数;
(5)p:不等式x2+2x-8<0的解集是{x|-4<x<2},
q:不等式x2+2x-8<0的解集是{x|x<-4或x>2}.
已知两个命题r(x):sinx+cosx>m,s(x):x2+mx+1>0.如果对x∈R,r(x)与s(x)有且仅有一个是真命题.求实数m的取值范围.
写出下列命题的否命题,并判断原命题及否命题的真假:
(1)如果一个三角形的三条边都相等,那么这个三角形的三个角都相等;
(2)矩形的对角线互相平分且相等;
(3)相似三角形一定是全等三角形.
把下列命题改写成“若p,则q”的形式,并写出它们的逆命题、否命题、逆否命题.
(1)正三角形的三内角相等;
(2)全等三角形的面积相等;
(3)已知a,b,c,d是实数,若a=b,c=d,则a+c=b+d.
下列命题中正确的命题是:
A.若,,则() |
B.若数列,的极限都不存在,则的极限也不存在 |
C.若数列,的极限都存在,则的极限也存在 |
D.设,若数列的极限存在,则数列的极限也存在 |
某医疗研究所为了检验某种血清预防感冒的作用,把名使用血清的人与另外名未用血清的人一年中的感冒记录作比较,提出假设:“这种血清不能起到预防感冒的作用”,利用列联表计算得,经查对临界值表知.
对此,四名同学做出了以下的判断:
p:有的把握认为“这种血清能起到预防感冒的作用”
q:若某人未使用该血清,那么他在一年中有的可能性得感冒
r:这种血清预防感冒的有效率为
s:这种血清预防感冒的有效率为
则下列结论中,正确结论的序号是 .(把你认为正确的命题序号都填上)
(1) p∧﹁q; (2)﹁p∧q ;
(3)(﹁p∧﹁q)∧(r∨s); (4)(p∨﹁r)∧(﹁q∨s)
给出如下三个命题:
①设a,bR,且>1,则<1;
②四个非零实数a、b、c、d依次成等比数列的充要条件是ad=bc;
③若f(x)=logix,则f(|x|)是偶函数.
其中正确命题的序号是
A.①② | B.②③ | C.①③ | D.①②③ |
下列四个命题中
①“”是“函数的最小正周期为”的充要条件;
②“”是“直线与直线相互垂直”的充要条件;
③ 函数的最小值为
其中假命题的为 (将你认为是假命题的序号都填上)
已知命题p:方程x2-mx+1=0有两个不等的正实数根;命题q:方程4x2+4(m-2)x+m2=0无实数根.若“p或q”为真,“p且q”为假,则m的取值范围是 .
试题篮
()