(本小题满分10分)选修4-4 :坐标系与参数方程
在直角坐标系xOy中,以O为极点,x正半轴为极轴建立极坐标系,曲线C的极坐标方程为
cos()=1,M,N分别为C与x轴,y轴的交点。
(1)写出C的直角坐标方程,并求M,N的极坐标;
(2)设MN的中点为P,求直线OP的极坐标方程。
本小题满分10分)选修4-1:几何证明选讲
已知ABC中,AB="AC, " D是 ABC外接圆劣弧AC弧上的点(不与点A,C重合),延长BD至E。
(1) 求证:AD的延长线平分CDE;
(2) 若BAC=30°,ABC中BC边上的高为2+,求ABC外接圆的面积。
.已知圆,直线过定点 A (1,0).
(1)若与圆C相切,求的方程;
(2)若的倾斜角为,与圆C相交于P,Q两点,求线段PQ的中点M的坐标;
(3)若与圆C相交于P,Q两点,求△CPQ面积的最大值
如图,已知中,,斜边上的高,以为折痕,将折 起,使为直角。
(1)求证:平面平面;(2)求证:
(3) 求点到平面的距离;(4) 求点到平面的距离;
已知直线l过点P(3,4)
(1)它在y轴上的截距是在x轴上截距的2倍,求直线l的方程.
(2)若直线l与轴,轴的正半轴分别交于点,求的面积的最小值.
已知圆内有一点,AB为过点且倾斜角为α的弦,
(1)当α=135º时,求直线AB的方程
(2)若弦AB被点平分,求直线AB的方程。
(本小题满分10分)
某市公租房的房源位于A,B,C三个片区,设每位申请人只申请其中一个片区的房源,且申请其中任一个片区的房源是等可能的求该市的任4位申请人中:
(Ⅰ)恰有2人申请A片区房源的概率;
(Ⅱ)申请的房源所在片区的个数的分布列与期望
试题篮
()