设函数.
(1)当时,取得极值,求的值;
(2)若在内为增函数,求的取值范围;
(3)设,是否存在正实数,使得对任意,都有成立?
若存在,求实数的取值范围;若不存在,请说明理由.
如图,线段AB的两个端点A、B分别在x轴,y轴上滑动,,点M是线段
AB上一点,且点M随线段AB的滑动而运动。
(I)求动点M的轨迹E的方程
(II)过定点N的直线交曲线E于C、D两点,交y轴于点P,若的值
如图,在多面体ABCD中,DB⊥平面ABC,AE∥BD,且AB=BC=CA=BD=2AE=2
(I)求证:平面ECD⊥平面BCD
(II)求二面角D-EC-B的正切值
(III)求三棱锥A-ECD的体积
(本小题满分10分)设圆满足:
(Ⅰ)截y轴所得弦长为2;
(Ⅱ)被x轴分成两段圆弧,其弧长的比为3∶1.
在满足条件(Ⅰ)、(Ⅱ)的所有圆中,求圆心到直线l:x-2y=0的距离最小的圆的方程.
(本小题满分10分)如图,在四棱锥S—ABCD中,侧棱SA=SB=SC=SD,底面ABCD是菱形,AC与BD交于O点.
(Ⅰ)求证:AC⊥平面SBD;
(Ⅱ)若E为BC中点,点P在侧面△SCD内及其边界上运动,并保持PE⊥AC,试指出动点P的轨迹,并证明你的结论.
试题篮
()