(本小题满分14分) 一圆形纸片的半径为10cm,圆心为O,
F为圆内一定点,OF=6cm,M为圆周上任意一点,把圆纸片折叠,
使M与F重合,然后抹平纸片,这样就得到一条折痕CD,设CD
与OM交于P点,如图
(1)求点P的轨迹方程;
(2)求证:直线CD为点P轨迹的切线.
.(本小题满分12分)已知点A、B的坐标分别是,.直线相交于点M,且它们的斜率之积为-2.
(Ⅰ)求动点M的轨迹方程;
(Ⅱ)若过点的直线交动点M的轨迹于C、D两点, 且N为线段CD的中点,求直线的方程.
(本小题满分14分)已知为平面上点的坐标.
(1)设集合,从集合中随机取一个数作为,从集合中随机取一个数作为,求点在轴上的概率;
(2)设,求点落在不等式组:所表示的平面区域内的概率.
一汽车厂生产A,B,C三类轿车,每类轿车均有舒适型和标准型两种型号,某月的产量如下表(单位:辆):
|
轿车A |
轿车B |
轿车C |
舒适型 |
100 |
150 |
z |
标准型 |
300 |
450 |
600 |
按类型分层抽样的方法在这个月生产的轿车中抽取50辆,其中有A类轿车10辆.
(1) 求z的值.
(2) 用分层抽样的方法在C类轿车中抽取一个容量为5的样本.将该样本看成一个总体,从中任取2辆,求至少有1辆舒适型轿车的概率;
(3) 用随机抽样的方法从B类舒适型轿车中抽取8辆,经检测它们的得分如下:9.4, 8.6, 9.2, 9.6, 8.7, 9.3, 9.0, 8.2.把这8辆轿车的得分看作一个总体,从中任取一个数,求该数与样本平均数之差的绝对值不超过0.5的概率.
(本小题满分12分)
已知角的终边与单位圆交于点P(,).
(Ⅰ)写出、、值;
(Ⅱ)求的值.
(本题满分13分)
把一颗骰子投掷两次,记第一次出现的点数为,第二次出现的点数为(其中).
(Ⅰ)若记事件“焦点在轴上的椭圆的方程为”,求事件的概率;
(Ⅱ)若记事件“离心率为2的双曲线的方程为”,求事件的概率.
(本小题14分)
|
椭圆:的离心率为,且过点.
⑴求椭圆 的方程;(本小题12分)已知命题:函数的图象与轴没有公共点,命题,若命题为真命题,求实数的取值范围
试题篮
()