已知直线L:与圆C:,
(1) 若直线L与圆相切,求m的值。
(2) 若,求圆C 截直线L所得的弦长。
如图示,给出的是某几何体的三视图,其中正视图与侧视图都是边长为2的正三角形,俯视图为半径等于1的圆.试求这个几何体的体积与侧面积.
我舰在岛A南偏西50°相距12海里的B处发现敌舰正从岛A沿北偏西10°的方向以每小时10海里的速度航行,若我舰要用2小时追上敌舰,求我舰的速度
已知三角形三个顶点是,,,
(1)求边上的中线所在直线方程;
(2)求边上的高所在直线方程.
已知定点,,动点到定点距离与到定点的距离的比值是.
(Ⅰ)求动点的轨迹方程,并说明方程表示的曲线;
(Ⅱ)当时,记动点的轨迹为曲线.
①若是圆上任意一点,过作曲线的切线,切点是,求的取值范围;
②已知,是曲线上不同的两点,对于定点,有.试问无论,两点的位置怎样,直线能恒和一个定圆相切吗?若能,求出这个定圆的方程;若不能,请说明理由.
已知椭圆的离心率为,且过点.
(1)求椭圆的方程;
(2)若过点C(-1,0)且斜率为的直线与椭圆相交于不同的两点,试问在轴上是否存在点,使是与无关的常数?若存在,求出点的坐标;若不存在,请说明理由.
某面包厂2011年利润为100万元,因市场竞争,若不开发新项目,预测从2012年起每年利润比上一年减少4万元.2012年初,该面包厂一次性投入90万元开发新项目,预测在未扣除开发所投入资金的情况下,第年(为正整数,2012年为第一年)的利润为万元.设从2012年起的前年,该厂不开发新项目的累计利润为万元,开发新项目的累计利润为万元(须扣除开发所投入资金).
(1)求,的表达式;
(2)问该新项目的开发是否有效(即开发新项目的累计利润超过不开发新项目的累计利润),如果有效,从第几年开始有效;如果无效,请说明理由.
某研究性学习小组对昼夜温差与某种子发芽数的关系进行研究,他们分别记录了四天中每天昼夜温差与每天100粒种子浸泡后的发芽数,得到如下资料:
时间 |
第一天 |
第二天 |
第三天 |
第四天 |
温差(℃) |
9 |
10 |
8 |
11 |
发芽数(粒) |
33 |
39 |
26 |
46 |
(1)求这四天浸泡种子的平均发芽率;
(2)若研究的一个项目在这四天中任选2天的种子发芽数来进行,记发芽的种子数分别为m,n(m<n),则以(m,n)的形式列出所有的基本事件,并求“m,n满足”的事件A的概率.
已知向量 与 共线,设函数.
(1)求函数的周期及最大值;
(2)已知锐角 △ABC 中的三个内角分别为 A、B、C,若有,边 BC=,,求 △ABC 的面积.
已知O为平面直角坐标系的原点,过点M(-2,0)的直线l与圆x+y=1交于P、Q两点,且
(Ⅰ)求∠PDQ的大小;
(Ⅱ)求直线l的方程.
在△ABC中,角A,B,C所对的边分别为a,b,c且满足.
(Ⅰ)求角C的大小;
(Ⅱ)求的最大值,并求取得最大值时角A的大小.
试题篮
()