如图所示,倾角为θ的粗糙斜面上静止放置着一个质量为m的闭合正方形线框abcd,它与斜面间动摩擦因数为μ。线框边长为l,电阻为R。ab边紧靠宽度也为l的匀强磁场的下边界,磁感应强度为B,方向垂直于斜面向上。将线框用细线通过光滑定滑轮与重物相连,重物的质量为M,如果将线框和重物由静止释放,线框刚要穿出磁场时恰好匀速运动。下列说法正确的是
A.线框刚开始运动时的加速度 |
B.线框匀速运动的速度 |
C.线框通过磁场过程中,克服摩擦力和安培力做的功等于线框机械能的减少量 |
D.线框通过磁场过程中,产生的焦耳热小于 |
电磁感应现象是电磁学中最重大的发现之一,它揭示了电、磁现象之间的本质联系。
电路中感应电动势的大小,跟穿过这一电路的磁通量的变化率成正比,即,这就是法拉第电磁感应定律。
(1)如图所示,把矩形线框abcd放在磁感应强度为B的匀强磁场里,线框平面跟磁感线垂直。设线框可动部分ab的长度为L,它以速度v向右匀速运动。请根据法拉第电磁感应定律推导出闭合电路的感应电动势E=BLv。
(2)两根足够长的光滑直金属导轨平行放置在倾角为θ的绝缘斜面上,两导轨间距为L。两导轨间接有阻值为R的电阻。一根质量为m的均匀直金属杆MN放在两导轨上,并与导轨垂直。整套装置处于磁感应强度为B匀强磁场中,磁场方向垂直于斜面向上。导轨和金属杆的电阻可忽略。让金属杆MN由静止沿导轨开始下滑。求
①当导体棒的速度为v(未达到最大速度)时,通过MN棒的电流大小和方向;
②导体棒运动的最大速度。
如图所示的装置叫做阿特伍德机,是阿特伍德创制的一种著名力学实验装置,用来研究匀变速直线运动的规律.绳子两端的物体下落(上升)的加速度总是小于自由落体的加速度g,同自由落体相比,下落相同的高度,所花费的时间要长,这使得实验者有足够的时间从容的观测、研究已知物体A、B的质量相等均为M,物体C的质量为m,轻绳与轻滑轮间的摩擦不计,绳子不可伸长,如果m=,求:
(1)物体B从静止开始下落一段距离的时间与其自由落体下落同样的距离所用时间的比值;
(2)系统由静止释放后运动过程中物体C对B的拉力.
如图所示,一个厚度不计的圆环A,紧套在长度为L的圆柱体B的上端,A、B两者的质量均为m.A与B之间的最大静摩擦力与滑动摩擦力相同,其大小为kmg(k>1).A,B一起由离地H高处由静止开始落下,触地后能竖直向上弹起,触地时间极短,且无动能损失.A环运动过程中未落地.
(l)B与地第一次碰撞后,B上升的最大高度是多少?
(2)B与地第一次碰撞后,当A与B刚相对静止时,B下端离地面的高度是多少?
(3)要使A、B不分离,L至少应为多少?
如图所示,光滑水平面上,在拉力F作用下,AB共同以加速度a做匀加速直线运动,某时刻突然撤去拉力F,此瞬时A(m1)和B(m2)的加速度为a1和a2,则
A.a1=0,a2=0 |
B.a1=a,a2=0 |
C.a1=aa |
D.a1=a a2=-a |
如图所示,小车的质量为M,人的质量为m,人用恒力F拉绳,若人与车保持相对静止,且水平地面光滑,不计滑轮与绳的质量,则车对人的摩擦力可能是( )
A.0 | B.,方向向右 |
C.,方向向左 | D.,方向向右 |
如图所示,水平固定的平行金属导轨(电阻不计),间距为l,置于磁感强度为B、方向垂直导轨所在平面的匀强磁场中,导轨左侧接有一阻值为R的电阻和电容为C的电容器。一根与导轨接触良好的金属导体棒垂直导轨放置,导体棒的质量为m,阻值为r。导体棒在平行于轨道平面且与导体棒垂直的恒力F的作用下由静止开始向右运动。
(1)若开关S与电阻相连接,当位移为x时,导体棒的速度为v。求此过程中电阻R上产生的热量以及F作用的时间?
(2)若开关S与电容器相连接,求经过时间t导体棒上产生的热量是多少?(电容器未被击穿)
如图所示,不计滑轮的质量和摩擦及绳的质量,一个质量为m的人拉着绳子使质量为M的物体匀减速下降,已知人对地面的压力大小为F,则物体下降的加速度大小为
A. | B. | C. | D. |
如图所示为杂技“顶杆”表演,一人站在地上,肩上扛一质量为M的竖直竹竿,当竿上一质量为m的人以加速度a加速下滑时,杆对地面上的人的压力大小为
A.(M + m)g-ma | B.(M + m)g + ma |
C.(M + m)g | D.(M-m)g |
物体A、B叠放在斜面体C上,物体B的上表面水平,如图所示,在水平力F的作用下一起随斜面向左匀加速运动的过程中,物体A、B相对静止,设物体B给物体A的摩擦力为,水平地面给斜面体C的摩擦力为,(),则
A. B. 水平向左 C. 水平向左 D. 水平向右
如图所示,在光滑的水平面上有一段长为L、质量分布均匀的绳子,在水平向左的恒力F作用下从静止开始做匀加速运动,绳子中某点到绳子左端的距离为x,设该处绳的张力大小为T,则能正确描述T与x之间的关系的图像是
如图所示,A、B两物体的质量皆为m,用轻弹簧连接,B放在水平地面上。用竖直向下的大小为F的力作用在A上,待系统平衡后突然撤去力F,忽略空气阻力。下列说法正确的是
A.撤去力F的瞬间,A物体处于超重状态
B.撤去力F的瞬间,B对地面的压力大小为2mg
C.撤去力F的瞬间,B物体的加速度大小为F/m
D.撤去力F后,若物体B不能离开地面,则A、弹簧和地球组成的系统机械能守恒
如图所示,竖直面内有一半径为的圆形轨道,一质量为m的小球从斜轨道上的A点由静止释放,沿轨道滑下,斜轨道的倾角为α,各处的摩擦均不计。求:
(1)为使小球能完成圆周运动,释放点A距水平地面的高度h至少要为多少?
(2)让小球从h/=2处由静止下滑,小球将从圆轨道的何处脱离?
如图所示,三个质量不等的木块M、N、Q间用两根水平细线a、b相连,放在粗糙水平面上.用水平向右的恒力F向右拉Q,使它们共同向右加速运动.这时细线a、b上的拉力大小分别为Ta、Tb.若在第2个木块N上再放一个小木块P,仍用水平向右的恒力F拉Q,使四个木块共同向右加速运动(P、N间无相对滑动),这时细线a、b上的拉力大小分别为Ta'、Tb'.下列说法中正确的是( )
A.Ta< Ta', Tb >Tb' | B.Ta> Ta', Tb <Tb' | C.Ta< Ta', Tb <Tb' | D.Ta> Ta', Tb >Tb' |
如图a、b所示,是一辆质量为6×103kg的公共汽车在t=0和t=3s末两个时刻的两张照片。当t=0时,汽车刚启动,在这段时间内汽车的运动可看成匀加速直线运动。图c是车内横杆上悬挂的拉手环经放大后的q=37°,据题中提供的信息,可以估算出的物理量有( )
A.汽车的加速度 | B.3s末汽车的速度 |
C.汽车的高度 | D.汽车的牵引力 |
试题篮
()