如图所示,图中五点均在匀强电场中,它们刚好是一个圆的四个等分点和圆心。已知电场线与圆所在平面平行。下列有关圆心O和等分点a的电势、电场强度的相关描述正确的是( )
A.a点的电势为6V |
B.a点的电势为-2V |
C.O点的场强方向指向a点 |
D.O点的场强方向指向电势为2V的点 |
空间某一静电场的电势φ在x轴上分布如图所示,x轴上两点B、C的电场强度在x方向上的分量分别是EBx、ECx,下列说法中正确的有( )
A.EBx的大小大于ECx的大小
B.EBx的方向沿x轴正方向
C.电荷在O点受到的电场力在x方向上的分量最大
D.负电荷沿x轴从B移到C的过程中,电场力先做负功,后做正功
某电场中的等势面如图(电势值已经标出),一电子在等势面1上的动能是25eV,其仅受电场力作用到达等势面4上时动能为10eV,则当电子具有的电势能为3eV时,分析电子所在的区域是等势面( )
A.1与2之间 |
B.2与3之间 |
C.3与4之间 |
D.无法确定 |
如图所示,在直角坐标系xoy的第一象限中,存在竖直向下的匀强电场,电场强度大小为,虚线是电场的理想边界线,虚线右端与x轴的交点为A,A点坐标为(L,0),虚线与x轴所围成的空间内没有电场;在第二象限存在水平向右的匀强电场,电场强度大小为,M(-L,L)和N(-L,0)两点的连线上有一个产生粒子的发生器装置,不断产生质量均为m,电荷量均为q的带正电的静止粒子,不计粒子的重力和粒子之间的相互作用力,且整个装置处于真空中,
(1)若粒子从M点由静止开始运动,进入第一象限后始终在电场中运动并恰好到达A点,求这个过程中该粒子运动的时间及到达A点的速度大小;
(2)若从MN线上M点下方由静止发出的所有粒子,在第二象限的电场加速后,经第一象限的电场偏转穿过虚线边界后都能到达A点,求此边界(图中虚线)方程
如图所示,水平虚线上有两个等量异种点电荷A、B, M、N、O是AB的垂线上两点,且AO>OB,2ON=OM。一个带正电的试探电荷在空间中运动的轨迹如图中实线所示,设M、N两点的场强大小分别EM、EN,电势分别为φM、φN,则下列判断正确的是
A.A点电荷一定带正电 |
B.试探电荷在M处的电势能小于N处的电势能 |
C.EM一定小于EN,φM可能大于φN |
D.UMN=UNO |
如图所示,绝缘倾斜固定轨道上A点处有一带负电,电量大小q=0.4C质量为0.3kg的小物体,斜面下端B点有一小圆弧刚好与一水平放置的薄板相接,AB点之间的距离S=1.92m,斜面与水平面夹角θ=37°,物体与倾斜轨道部分摩擦因数为0.2,斜面空间内有水平向左,大小为E1=10V/m的匀强电场,现让小物块从A点由静止释放,到达B点后冲上薄板,薄板由新型材料制成,质量M=0.6kg,长度为L,物体与薄板的动摩擦因数μ=0.4,放置在高H="1." 6m的光滑平台上,此时,在平台上方虚线空间BCIJ内加上水平向右,大小为E2=1.5V/m的匀强电场,经t=0.5s后,改成另一水平方向的电场E3,在此过程中,薄板一直加速,到达平台右端C点时,物体刚好滑到薄板右端,且与薄板共速,由于C点有一固定障碍物,使薄板立即停止,而小物体则以此速度V水平飞出,恰好能从高h=0.8m的固定斜面顶端D点沿倾角为53°的斜面无碰撞地下滑,(重力加速度g=10m/s2,sin37°=,cos37°=)求:
(1)小物体水平飞出的速度v及斜面距平台的距离x;
(2)小物体运动到B点时的速度vB;
(3)电场E3的大小和方向,及薄板的长度L。
如图,AB和CD为等势面,电势分别为U和U′,则U________U′(填“>”“=”或“<”),负电荷q在M点和N点的电势能大小EM________EN;若把q从M移到N是________做功.
如图所示,AB是一倾角为θ=37°的绝缘粗糙直轨道,滑块与斜面间的动摩擦因数μ=0.30,BCD是半径为R=0.2m的光滑圆弧轨道,它们相切于B点,C为圆弧轨道的最低点,整个空间存在着竖直向上的匀强电场,场强E=4.0×103N/C,质量m=0.20kg的带电滑块从斜面顶端由静止开始滑下。已知斜面AB对应的高度h=0.24m,滑块带电荷q=-5.0×10-4 C,取重力加速度g=10m/s2,sin37°=0.60,cos37°=0.80。求:
(1)滑块从斜面最高点滑到斜面底端B点时的速度大小;
(2)滑块滑到圆弧轨道最低点C时对轨道的压力。
光滑水平面上放置两个等量同种电荷,其连线中垂线上有A、B、C三点,如图甲所示,一个质量m=1kg的小物块自C点由静止释放,小物块带电荷量q=2C,其运动的v-t图线如图乙所示,其中B点为整条图线切线斜率最大的位置(图中标出了该切线),则以下分析正确的是
A.B点为中垂线上电场强度最大的点,场强E=1V/m
B.由C点到A点物块的电势能先减小后变大
C.由C点到A点,电势逐渐升高
D.B、A两点间的电势差为UBA=8.25V
如图所示为一真空示波管,电子从灯丝K发出(初速度不计),经灯丝与A板间的加速电压U1加速,从A板中心孔沿中心线KO射出,然后进入两块平行金属板M、N形成的偏转电场中(偏转电场可视为匀强电场),电子进入M、N间电场时的速度与电场方向垂直,电子经过电场后打在荧光屏上的P点.已知加速电压为U1,M、N两板间的电压为U2,两板间的距离为d,板长为L1,板右端到荧光屏的距离为L2,电子的质量为m,电荷量为e.求:
(1)电子穿过A板时的速度大小;
(2)电子从偏转电场射出时的侧移量;
(3)P点到O点的距离.
如图所示,在xOy平面的第一象限内,分布有沿x轴负方向的场强E=×104N/C的匀强电场,第四象限内分布有垂直纸面向里的磁感应强度B1="0.2" T的匀强磁场,第二、三象限内分布有垂直纸面向里的磁感应强度B2的匀强磁场。在x轴上有一个垂直于y轴的平板OM,平板上开有一个小孔P,P处连接有一段长度d=lcm内径不计的准直管,管内由于静电屏蔽没有电场。y轴负方向上距O点cm的粒子源S可以向第四象限平面内各个方向发射a粒子,假设发射的a粒子速度大小v均为2×105m/s,此时有粒子通过准直管进入电场, 打到平板和准直管管壁上的a粒子均被吸收。已知a粒子带正电,比荷为5×l07C/kg,重力不计,求:
(1)a粒子在第四象限的磁场中运动时的轨道半径和粒子从S到达P孔的时间;
(2)除了通过准直管的a粒子外,为使其余a粒子都不能进入电场,平板OM的长度至少是多长?
(3)经过准直管进入电场中运动的a粒子,第一次到达y轴的位置与O点的距离;
(4)要使离开电场的a粒子能回到粒子源S处,磁感应强度B2应为多大?
如图所示,质量为m,电荷量为e的电子,从A点以速度v0垂直于电场方向射入一个电场强度为E的匀强电场中,从B点射出电场时的速度方向与电场线成120°角,电子重力不计。求:
(1)电子在电场中的加速度大小a及电子在B点的速度大小vB;
(2)A、B两点间的电势差UAB;
(3)电子从A运动到B的时间tAB。
虚线MN下方有竖直向上的匀强电场,场强大小E=2×103V/m,MN上方有一竖直长为L=0.5m的轻质绝缘杆,杆的上下两端分别固定一带电小球A、B(可看成质点),质量均为m=0.01kg,A带电量为;B带电量,B到MN的距离h=0.05m。现将杆由静止释放(g取10m/s2),求:
(1)小球B在匀强电场中,而A还未进入电场时,两小球的加速度大小。
(2)从开始运动到A刚要进入匀强电场过程的时间。
如图所示,在xOy坐标系中,两平行金属板如图放置,OD与x轴重合,板的左端与原点O重合,板长L=2m,板间距离d=1m,紧靠极板右侧有一荧光屏。两金属板间电压UAO变化规律如图所示,变化周期为T=2×10-3s,U0=103V,t=0时刻一带正电的粒子从左上角A点,以平行于AB边v0=1000m/s的速度射入板间,粒子电量q=1×10-5C,质量m=1×10-7kg。不计粒子所受重力。求:
(1)粒子在板间运动的时间;
(2)粒子打到荧光屏上的纵坐标;
(3)粒子打到屏上的动能。
“电子能量分析器”主要由处于真空中的电子偏转器和探测板组成.偏转器是由两个相互绝缘、半径分别为RA和RB的同心金属半球面A和B构成,A、B为电势值不等的等势面,其过球心的截面如图所示.一束电荷量为E、质量为m的电子以不同的动能从偏转器左端M的正中间小孔垂直入射,进入偏转电场区域,最后到达偏转器右端的探测板N,其中动能为Ek0的电子沿等势面C做匀速圆周运动到达N板的正中间.忽略电场的边缘效应.
(1)判断球面A、B的电势高低,并说明理由;
(2)求等势面C所在处电场强度E的大小;
(3)若半球面A、B和等势面C的电势分别为φA、φB和φC,则到达N板左、右边缘处的电子,经过偏转电场前、后的动能改变量△Ek左和△Ek右分别为多少?
(4)比较|△Ek左|和|△Ek右|的大小,并说明理由.
试题篮
()