如图,在两水平极板间存在匀强电场和匀强磁场,电场方向竖直向下,磁场方向垂直于纸面向里。一带电粒子以某一速度沿水平直线通过两极板。若不计重力,下列四个物理量中哪一个改变时,粒子运动轨迹不会改变?( )
A.粒子速度的大小 |
B.粒子所带电荷量 |
C.电场强度 |
D.磁感应强度 |
如图所示A、B为水平放置的足够长的平行板, 板间距离为d =1.0×m,A板中央有一电子源P,在纸面内能向各个方向发射速度在0~3.2×m/s范围内的电子,Q为P点正上方B板上的一点, 若垂直纸面加一匀强磁场, 磁感应强度B = 9.1×T,已知电子的质量m = 9.1×kg, 电子电量e = 1.6×C, 不计电子的重力和电子间相互作用力,且电子打到板上均被吸收, 并转移到大地. 求:
(1)沿PQ方向射出的电子,击中A、B两板上的范围.
(2)若从P点发出的粒子能恰好击中Q点,则电子的发射方向(用图中θ角表示) 与电子速度的大小v之间应满足的关系及各自相应的取值范围.
如图(a)所示,水平放置的平行金属板AB间的距离,板长,在金属板的左端竖直放置一带有小孔的挡板,小孔恰好位于AB板的正中间.距金属板右端处竖直放置一足够大的荧光屏.现在AB板间加如图(b)所示的方波形电压,已知 .在挡板的左侧,有大量带正电的相同粒子以平行于金属板方向的速度持续射向挡板,粒子的质量,电荷量,速度大小均为.带电粒子的重力不计.求:
(1)在t=0时刻进入的粒子射出电场时竖直方向的速度;
(2)荧光屏上出现的光带长度;
(3)若撤去挡板,同时将粒子的速度均变为,则荧光屏上出现的光带又为多长。
如图所示,质量为5 x10-8kg的带电粒子以2m/s的速度从水平放置的平行金属板A、B中央飞入电场,已知板长10cm,板间距离2 cm,当A、B间电势差UAB=103V时,带电粒子恰好沿直线穿过电场.求:
(1)带电粒子的电性和所带电荷量;
(2)A、B间所加电压在什么范围均带电粒子能从板间飞出?
如图ABCD是竖直放在E=103 V/m的水平匀强电场中的绝缘光滑轨道,BCD是直径为20cm的半圆环,AB=15cm,一质量m=10g,带电量q=10-4 C的小球由静止在电场力作用下自A点沿轨道运动,求:
(1)由A到C点电场力作了多少功?
(2)它运动到C点速度多大?
(3)此时对轨道的压力多大?
如图所示,在两条平行的虚线内存在着宽度为L、电场强度为E的匀强电场,在与右侧虚线相距也为L处有一与电场平行的屏.现有一电荷量为+q、质量为m的带电粒子(重力不计),以垂直于电场线方向的初速度v0射入电场中,v0方向的延长线与屏的交点为O.试求:
(1)粒子从射入电场到打到屏上所用的时间.
(2)粒子刚射出电场时的速度方向与初速度方向间夹角的正切值tan α;
(3)粒子打在屏上的点P到O点的距离Y.
如图所示,匀强电场中有一直角三角形ABC,∠ACB=90°,∠ABC=30°,BC=20cm已知电场线的方向平行于三角形ABC所在平面。将电荷量q=2×10-5C的正电荷从A移到B点电场力做功为零,从B移到C点克服电场力做功1.0×10-3J。试求:
(1)该电场的电场强度大小和方向;
(2)若将C点的电势规定为零时,B点的电势。
如图所示xOy平面内,在x轴上从电离室产生的带正电的粒子,以几乎为零的初速度飘入电势差为U=200V的加速电场中,然后经过右侧极板上的小孔沿x轴进入到另一匀强电场区域,该电场区域范围为﹣l≤x≤0(l=4cm),电场强度大小为E=×104V/m,方向沿y轴正方向.带电粒子经过y轴后,将进入一与y轴相切的圆形边界匀强磁场区域,磁场区域圆半径为r=2cm,圆心C到x轴的距离为d=4cm,磁场磁感应强度为B=8×10﹣2T,方向垂直xoy平面向外.带电粒子最终垂直打在与y轴平行、到y轴距离为L=6cm的接收屏上.求:
(1)带电粒子通过y轴时离x轴的距离;
(2)带电粒子的比荷;
(3)若另一种带电粒子从电离室产生后,最终打在接收屏上y=cm处,则该粒子的比荷又是多少?
如图所示,光滑绝缘的圆形轨道BCDG位于竖直平面内,轨道半径为R,下端与水平绝缘轨道在B点平滑连接,整个轨道处在水平向左的匀强电场中。现有一质量为m、带正电的小滑块(可视为质点)置于水平轨道上,滑块受到的电场力大小为,滑块与水平轨道间的动摩擦因数为0.5,重力加速度为g,
求:(1)若滑块从水平轨道上距离B点s=3R的A点由静止释放,求滑块到达与圆心O等高的C点时的速度大小;
(2)在(1)的情况下,求滑块到达C点时对轨道的作用力大小;
(3)改变s的大小,使滑块恰好始终沿轨道滑行,且从G点飞出轨道,求滑块在圆轨道上滑行过程中的最小速度大小
(1)在物理学发展史上,许多科学家通过恰当应用科学研究方法,超越了当时研究条件的局限和传统观念,取得了辉煌的研究成果,下列符合物理学史实的是
A.牛顿由理想斜面实验通过逻辑推理否定了力是维持物体运动的原因的观点。
B.19世纪以前,对相隔一定距离的电荷或磁体间的作用不少人持超距作用的观点,在19世纪30年代,法拉第提出电场或磁场的观点。
C.人们从电荷间的作用力与引力的相似性中提出“平方反比”的猜想,这一科学问题是由法国科学家库仑通过库仑扭秤实验完成的
D.安培首先引入电场线和磁感线,极大地推动了电磁现象的研究。
E.牛顿通过著名的“月地检验”,突破天地之间的束缚,使得万有引力定律成为科学史上最伟大定律之一。
(2)微波实验是近代物理实验室中的一个重要部分.反射式速调管是一种结构简单、实用价值较高的常用微波器件之一,它是利用电子团与场相互作用在电场中发生振荡来产生微波,其振荡原理与下述过程类似.如图1所示,在虚线MN两侧分布着方向平行于x轴的电场,其电势φ随x的分布可简化为如图2所示的折线.一带电微粒从A点由静止开始,在电场力作用下沿直线在A、B两点间往返运动.已知带电微粒质量m=1.0×10﹣20 kg,带电荷量q=﹣1.0×10﹣9 C,A点距虚线MN的距离d1=1.0cm,不计带电微粒的重力,忽略相对论效应.求:
①B点距虚线MN的距离d2;
②带电微粒在A、B之间震荡的周期T.
如图所示,在光滑绝缘的水平面上,放置两块直径为2L的同心半圆形金属板A、B,两板间的距离很近,半圆形金属板A、B的左边有水平向右的匀强电场E1,半圆形金属板A、B之间存在电场,两板间的电场强度E2可认为大小处处相等,方向都指向O,现从正对A、B板间隙、到两板的一端距离为d处静止释放一个质量为m、电荷量为q的带正电微粒(不计重力),此微粒恰能在两板间运动且不与板发生相互作用.
(1)求半圆形金属板A、B之间电场强度的E2的大小?
(2)从释放微粒开始,经过多长时间微粒的水平位移最大?
图1中A和B是真空中的两块面积很大的平行金属板、加上周期为T的交流电压,在两板间产生交变的匀强电场。已知B板电势为零,A板电势随时间变化的规律如图2所示,其中的最大值为,最小值为,在图1中,虚线MN表示与A、B板平行等距的一个较小的面,此面到A和B的距离皆为l。在此面所在处,不断地产生电量为q、质量为m的带负电的微粒,各个时刻产生带电微粒的机会均等。这种微粒产生后,从静止出发在电场力的作用下运动。设微粒一旦碰到金属板,它就附在板上不再运动,且其电量同时消失,不影响A、B板的电势,已知上述的T、、l、q和m等各量的值正好满足等式。若不计重力,不考虑微粒间的相互作用,求:(结果用q、、m、T表示)
(1)在t=0到t=这段时间内产生的微粒中到达A板的微粒的最大速度;
(2)在0-范围内,哪段时间内产生的粒子能到达B板?
(3)在t=0到t=这段时间内产生的微粒中到达B板的微粒的最大速度;
如图(a)所示,水平放置的平行金属板AB间的距离d=0.1m,板长L=0.3m.距金属板右端x=0.5m处竖直放置一足够大的荧光屏。现在AB板间加如图(b)所示的方波形电压,已知 U0=1.0×102V。有大量带正电的相同粒子以平行于金属板方向的速度从AB正中间持续射入,粒子的质量m=1.0×10-7kg,电荷量q=1.0×10-2C,速度大小均为v0=1.0×104m/s。带电粒子的重力不计。求:
(1)在t=0时刻进入的粒子射出电场时竖直方向的速度;
(2)荧光屏上出现的光带长度。
如图所示,A、B为两块平行金属板,A板带正电荷、B板带负电荷.两板之间存在着匀强电场,两板间距为d、电势差为U,在B板上开有两个间距为L的小孔.C、D为两块同心半圆形金属板,圆心都在贴近B板的O′处,C带正电、D带负电.两板间的距离很近,两板末端的中心线正对着B板上的小孔,两板间的电场强度可认为大小处处相等,方向都指向O′.半圆形金属板两端与B板的间隙可忽略不计.现从正对B板小孔紧靠A板的O处由静止释放一个质量为m、电荷量为q的带正电的微粒(微粒的重力不计),问:
(1)微粒穿过B板小孔时的速度多大?
(2)为了使微粒能在C、D板间运动而不碰板,C、D板间的电场强度大小应满足什么条件?
(3)从释放微粒开始,求微粒通过半圆形金属板间的最低点P点的时间?
静电场方向平行于x轴,以坐标原点为中心,其电势随x的分布如图所示,图中和d为已知量。一个带负电的粒子仅在电场力作用下,以坐标原点O为中心沿x轴方向在A、B之间做周期性运动。己知该粒子质量为m、电量为-q,经过坐标原点时速度为v。求
(1)粒子在电场中所受电场力的大小。
(2)A点离坐标原点O的距离。
(3)粒子的运动周期。
试题篮
()