如图所示,水平的粗糙轨道与竖直的光滑圆形轨道相连,圆形轨道间不相互重叠,即小球离开圆形轨道后可继续沿水平轨道运动。圆形轨道半径R=0.2m,右侧水平轨道BC长为L=4m,C点右侧有一壕沟,C、D两点的竖直高度h=lm,水平距离s=2m,小球与水平轨道间的动摩擦因数μ=0.2,重力加速度g=l0m/s2。一小球从圆形轨道最低点B以某一水平向右的初速度出发,进入圆形轨道。
(1)若小球通过圆形轨道最高点A时给轨道的压力大小恰为小球的重力大小,求小球在B点的初速度多大?
(2)若小球从B点向右出发,在以后的运动过程中,小球既不脱离圆形轨道,又不掉进壕沟,求小球在B点的初速度的范围是多大?
如图所示的xOy坐标系中,x轴上固定一个点电荷Q,y轴上固定一根光滑绝缘细杆(细杆的下端刚好在坐标原点O处),将一个套在杆上重力不计的带电圆环(视为质点)从杆上P处由静止释放,圆环从O处离开细杆后恰好绕点电荷Q做圆周运动。下列说法正确的是( )
A.圆环沿细杆从P运动到O的过程中,速度可能先增大后减小 |
B.圆环沿细杆从P运动到O的过程中,加速度可能先增大后减小 |
C.增大圆环所带的电荷量,其他条件不变,圆环离开细杆后仍然能绕点电荷做圆周运动 |
D.将圆环从杆上P的上方由静止释放,其他条件不变,圆环离开细杆后仍然能绕点电荷做圆周运动 |
如图,质量为m的b球用长h的细绳悬挂于水平轨道BC的出口C处。质量也为m的小球a,从距BC高h的A处由静止释放,沿ABC光滑轨道滑下,在C处与b球正碰并与b粘在一起。已知BC轨道距地面有一定的高度,悬挂b球的细绳能承受的最大拉力为2.8mg。试问:
①a与b球碰前瞬间的速度多大?
②a、b两球碰后,细绳是否会断裂?(要求通过计算回答)
石墨烯是近些年发现的一种新材料,其超高强度及超强导电、导热等非凡的物理化学性质有望使21世纪的世界发生革命性的变化,其发现者由此获得2010年诺贝尔物理学奖。用石墨烯制作超级缆绳,人类搭建“太空电梯”的梦想有望在本世纪实现。科学家们设想,通过地球同步轨道站向地面垂下一条缆绳至赤道基站,电梯仓沿着这条缆绳运行,实现外太空和地球之间便捷的物资交换。(地面附近重力加速度g取10 m/s2,地球自转角速度ω=7.2×10-5rad/s,地球半径R=6.4×103km。计算结果保留3位有效数字)
(1)若“太空电梯”将货物从赤道基站运到距地面高度为h1=17R/3的同步轨道站,求轨道站内的人相对地心运动的速度大小。
(2)当电梯仓停在距地面高度h2=2R的站点时,求仓内质量m2="54" kg的人对水平地板的压力大小。
如图所示,有一固定的且内壁光滑的半球面,球心为O,最低点为C,在其内壁上有两个质量相同的小球(可视为质点)A和B,在两个高度不同的水平面内做匀速圆周运动,A球的轨迹平面高于B球的轨迹平面,A、B两球与O点的连线与竖直线OC间的夹角分别为α=53°和β=37°(sin37°=0.6,cos37°=0.8,sin53°=0.8,cos53°=0.6),以最低点C所在的水平面为重力势能的参考平面,则
A.A、B两球所受弹力的大小之比为4︰3
B.A、B两球运动的周期之比为4︰3
C.A、B两球的动能之比为64︰27
D.A、B两球的重力势能之比为16︰9
设地球自转周期为T,质量为M。引力常量为G。假设地球可视为质量均匀分布的球体,半径为R。同一物体在南极和赤道水平面上静止时所受到的支持力之比为
A. | B. | C. | D. |
如图所示,一倾斜的匀质圆盘绕垂直于盘面的固定对称轴以恒定的角速度转动,盘面上离转轴距离r=0.1m处有一质量为0.1kg的小物体恰好能与圆盘始终保持相对静止.物体与盘面间的动摩擦因数为0.8(设最大静摩擦力等于滑动摩擦力),盘面与水平面的夹角为37°(g=10m/s2,sin37°=0.6),求:
(1)圆盘转动的角速度ω的大小;
(2)小物体运动到最高点时受到的摩擦力.
某人造地球卫星绕地球做匀速圆周运动,假如它的轨道半径增加到原来的n倍后,仍能够绕地球做匀速圆周运动,则( )
A.根据,可知卫星运动的线速度将增大到原来的n倍。 |
B.根据,可知卫星受到的向心力将减小到原来的倍。 |
C.根据,可知地球给卫星提供的向心力将减小到原来的倍。 |
D.根据,可知卫星运动的线速度将减小到原来的倍。 |
如图所示,两根等高的四分之一光滑圆弧轨道,半径为r、间距为L,图中oa水平,co竖直,在轨道顶端连有一阻值为R的电阻,整个装置处在一竖直向上的匀强磁场中,磁感应强度为B。现有一根长度稍大于L、质量为m、电阻不计的金属棒从轨道的顶端ab处由静止开始下滑,到达轨道底端cd时受到轨道的支持力为2mg。整个过程中金属棒与导轨接触良好,轨道电阻不计,求:
(1)金属棒到达轨道底端cd时的速度大小和通过电阻R的电流:
(2)金属棒从ab下滑到cd过程中回路中产生的焦耳热和通过R的电荷量:
(3)若金属棒在拉力作用下,从cd开始以速度v0向右沿轨道做匀速圆周运动,则在到达ab的过程中拉力做的功为多少?
光滑水平薄板中心有一个小孔,在孔内穿过一条质量不计的细绳,绳的一端系一小球,小球以O为圆心在板上做匀速圆周运动,半径为R,此时绳的拉力为F,若逐渐增大拉力至8F,小球仍以O为圆心做半径为0.5R的匀速圆周运动,则此过程中绳的拉力做的功为__________
如图所示,质量为m的b球用长为h的细绳悬挂于水平轨道BC的出口C处。质量也为m的a球,从距BC高为h的A处由静止释放,沿光滑轨道ABC滑下,在C处与b球正碰并与b球粘在一起。已知BC轨道距地面有一定的高度,悬挂b球的细绳能承受的最大拉力为2.8mg。求:
(1)ab碰后的速度多大;
(2)a与b碰后细绳是否会断裂。
如图所示,半径为R的半球形陶罐,固定在可以绕竖直轴旋转的水平转台上,转台转轴与过陶罐球心O的对称轴重合,转台以一定角速度匀速旋转,一质量为m的小物块落入陶罐内,经过一段时间后,小物块随陶罐一起转动且相对罐壁静止,它和O点的连线与之间的夹角为60°。已知重力加速度大小为,小物块与陶罐之间的最大静摩擦力大小为。
(1)若小物块受到的摩擦力恰好为零,求此时的角速度;
(2)若小物块一直相对陶罐静止,求陶罐旋转的角速度的取值范围。
如图所示,用长为L的细绳拴着质量为m的小球在竖直平面内做完整的圆周运动,则下列说法中正确的是( )
A.小球运动到最高点时所受的向心力不一定等于重力 |
B.小球在最高点时绳子的拉力不可能为零 |
C.小球运动到最高点的速率一定大于 |
D.小球经过最低点时绳子的拉力一定大于小球重力 |
如图所示,物块质量为m,一直随转筒一起以角速度ω绕竖直轴做匀速圆周运动,以下描述正确的是( )
A.物块所需向心力由圆筒对物块的摩擦力提供 |
B.若角速度ω增大,物块所受摩擦力增大 |
C.若角速度ω增大,物块所受弹力增大 |
D.若角速度ω减小,物块所受摩擦力减小 |
试题篮
()