如图所示,在水平向右的匀强电场中,一根长为L的绝缘细线,一端连着一质量为m、带电量为+q的小球,另一端固定于O点,现把小球向右拉至细线水平且与场强方向平行的位置,无初速释放,小球能摆到最低点的另一侧,细线与竖直方向的最大夹角θ=30°.求:
(1)求场强E的大小;
(2)若使带电小球在平行于电场的竖直平面内做完整的圆周运动,小球运动过程中的最小动能是多少?
(3)若把该小球向左拉至细线水平且与场强方向平行的位置,无初速释放,小球摆到最低点时细线的拉力T=?
(9分) 如图所示,水平轨道AB与竖直半圆形光滑轨道在B点平滑连接,半圆形轨道半径R=2.5m,质量m=0.1kg的小滑块(可视为质点)以一定的速度从水平轨道进入半圆形轨道,沿轨道运动恰好能到最高点C,且从C点水平飞出后恰好落在A点,重力加速度g=10m/s2,试分析求解:
(1)滑块通过C点时的速度大小;
(2)AB间的距离x。
水平光滑轴上用长的轻绳静止悬挂一小球,质量为,时刻,对小球施加一瞬时水平向右的冲击后获得动能,小球运动后,在最低点时再次给小球施加一与第一次同方向的瞬时冲击后获得动能,小球才恰好能到达最高点。已知小球运动中绳子始终没有弯曲。求:
(1)小球受到第二次冲击后瞬间的速度?
(2)两次冲击外力分别对小球做功的比值的最大值?
某水上游乐场举办了一场趣味水上比赛.如图所示,质量m=60kg的参赛者(可视为质点),在河岸上A点双手紧握一根长L=5.0m的不可伸长的轻绳,轻绳另一端系在距离水面高H=10.0m的O点,此时轻绳与竖直方向的夹角为θ=37°,C点是位于O点正下方水面上的一点,距离C点x=5.0m处的D点固定着一只救生圈,O、A、C、D各点均在同一竖直面内,若参赛者双手抓紧绳端点,从台阶上A点沿垂直于轻绳斜向下以一定的初速度跃出,当摆到O点正下方的B点时松开手,此后恰能落在救生圈内。(sin37°=0.6,cos37°=0.8, g=10m/s2)
(1)求参赛者经过B点时速度的大小v;
(2)求参赛者从台阶上A点跃出时的动能EK;
(3)若手与绳之间的动摩擦因数为0.6,参赛者要顺利完成比赛,则每只手对绳的最大握力不得小于多少?(设最大静摩擦等于滑动摩擦力)
城市中为了解决交通问题,修建了许多立交桥,如图所示,桥面为圆弧形的立交桥AB,横跨在水平路面上,长为L=200m,桥高h=20m。可以认为桥的两端A、B与水平路面的连接处是平滑的。一辆小汽车的质量m=1040kg,以25m/s的速度冲上圆弧形的立交桥,假设小汽车冲上立交桥后就立即关闭发动机,不计车受到的摩擦阻力。试计算:(g取10m/s2)
(1)小汽车冲上桥顶时的速度是多大?
(2)小汽车在桥顶处对桥面的压力的大小。
如图所示,粗糙水平面与半径R=1.5m的光滑圆弧轨道相切于B点,质量m=1kg的物体在大小为10N、方向与水平面成37°角的拉力F作用下从A点由静止开始沿水平面运动,到达B点时立刻撤去F,物体沿光滑圆弧向上冲并越过C点,然后返回经过B处的速度vB=15m/s。已知sAB=15m,g=10m/s2,sin37°=0.6,cos37°=0.8。求:
(1)物体到达C点时对轨道的压力和物体越过C点后上升的最大高度h;
(2)物体与水平面的动摩擦因数μ。
如图所示,在竖直向下的匀强电场中有一带电量为q=-2×10-5C的小球,自倾角为θ=37°的绝缘斜面顶端A点由静止开始滑下,接着通过半径为R=0.5m的绝缘半圆轨道最高点C,已知小球质量为m=0.5kg,匀强电场的场强E=2×105N/C,小球运动过程中摩擦阻力及空气阻力不计,求:
(1)H至少应为多少?
(2)通过调整释放高度使小球到达C点的速度为2m/s,则小球落回到斜面时的动能是多少?
如图所示,竖直平面内的半圆形轨道下端与水平面相切,B、C分别为半圆形轨道的最低点和最高点。小滑块(可视为质点)沿水平面向左滑动,经过A点时的速度vA=6.0m/s。已知半圆形轨道光滑,半径R=0.40m,滑块与水平面间的动摩擦因数m =0.50,A、B两点间的距离l=1.10m。取重力加速度g=10m/s2。求:
(1)滑块运动到B点时速度的大小vB;
(2)滑块运动到C点时速度的大小vC;
(3)滑块从C点水平飞出后,落地点与B点间的距离x。
如图所示,四分之三周长的细圆管的半径R=0.4m,管口B和圆心O在同一水平面上,D是圆管的最高点,其中半圆周BE段存在摩擦,BC和CE段动摩擦因数相同,ED段光滑;质量m=0.5kg、直径稍小于圆管内径的小球从距B正上方高H=2.5m的A处自由下落,从B处进入圆管继续运动直到圆管的最高点D飞出,恰能再次飞到B处.重力加速度g=10m/s2.求:
(1)小球飞离D点时的速度;
(2)小球在D点时对轨道的压力大小和方向;
(3)小球从B点到D点过程中克服摩擦所做的功.
如图所示,水平轨道MN与竖直光滑半圆轨道相切于N点,轻弹簧左端固定在轨道的M点,将一质量为m=1kg的小物块靠在弹簧右端并压缩至O点,此时弹簧储有弹性势能Ep,现将小物块无初速释放,小物块恰能通过轨道最高点B,此后水平飞出再落回到水平面。已知ON的距离L=3.0m,小物块与水平轨道间的动摩擦因数μ=0.2,圆轨道半径R=0.4m,g取10 m/s2。求:
(1)小物块通过B点抛出后,落地点距N的水平距离x;
(2)弹簧储有的弹性势能Ep。
如图所示,竖直平面内四分之一光滑圆弧轨道AP和水平传送带PC相切于P点,圆弧轨道的圆心为O,半径为R=5m,一质量为m=2kg的小物块从圆弧顶点由静止开始沿轨道下滑,再滑上传送带PC,传送带可以速度v=5m/s沿顺时针或逆时针方向的传动.小物块与传送带间的动摩擦因数为μ=0.5,不计物体经过圆弧轨道与传送带连接处P时的机械能损失,重力加速度为g=10m/s2.
(1)求小物体滑到P点时对圆弧轨道的压力;
(2)若传送带沿逆时针方向传动,物块恰能滑到右端C,问传送带PC之间的距离L为多大.
如图所示,一质点沿半径R=20m的圆周自A点出发,顺时针方向运动了10s第一次到达B点.求:
(1)这一过程中质点的路程;
(2)这一过程中质点位移的大小和方向;
(3)这一过程中质点平均速度的大小.
同学们参照伽利略时期演示平抛运动的方法制作了如图所示的实验装置。图中水平放置的底板上竖直地固定有板和板。板上部有一半径为的圆弧形的粗糙轨道,为最高点,为最低点,点处的切线水平,距底板高为.板上固定有三个圆环.将质量为的小球从处静止释放,小球运动至飞出后无阻碍地通过各圆环中心,落到底板上距水平距离为处。不考虑空气阻力,重力加速度为.求:
(1)距水平距离为的圆环中心到底板的高度.
(2)小球运动到点时速度的大小以及对轨道压力的大小和方向;
(3)摩擦力对小球做的功
如图,置于圆形水平转台边缘的小物块随转台加速转动,当转速达到某一数值时,物块恰好滑离转台开始做平抛运动.现测得转台半径R=0.5 m,离水平地面的高度H=0.8 m,物块平抛落地过程水平位移的大小s=0.4 m.设物块所受的最大静摩擦力等于滑动摩擦力,取重力加速度g=10 m/s2.求:
(1)物块做平抛运动的初速度大小v0;
(2)物块与转台间的动摩擦因数μ.
试题篮
()