如图所示,在xOy平面内存在均匀、大小随时间周期性变化的磁场和电场,变化规律分别如图乙、丙所示(规定垂直纸面向里为磁感应强度的正方向、+y轴方向为电场强度的正方向)。在t=0时刻由原点O发射初速度大小为v0,方向沿+y轴方向的带负电粒子(不计重力)。其中已知v0、t0、B0、E0,且,粒子的比荷,x轴上有一点A,坐标为(,0)。
(1)求时带电粒子的位置坐标。
(2)粒子运动过程中偏离x轴的最大距离。
(3)粒子经多长时间经过A点。
如图,有3块水平放置的长薄金属板a、b和c,a、b之间相距为L。紧贴b板下表面竖直放置半径为R的半圆形塑料细管,两管口正好位于小孔M、N处。板a与b、b与c之间接有电压可调的直流电源,板b与c间还存在方向垂直纸面向外的匀强磁场。当体积为V0、密度为ρ、电荷量为q的带负电油滴,等间隔地以速率v0从a板上的小孔竖直向下射入,调节板间电压Uba和Ubc,当Uba=U1、Ubc=U2时,油滴穿过b板M孔进入细管,恰能与细管无接触地从N孔射出。忽略小孔和细管对电场的影响,不计空气阻力,重力加速度为g。求:
(1)油滴进入M孔时的速度v1;
(2)b、c两板间的电场强度E和磁感应强度B的值;
(3)当油滴从细管的N孔射出瞬间,将Uba和B立即调整到Uba′和B′,使油滴恰好不碰到a板,且沿原路与细管无接触地返回穿过M孔,请给出Uba′和B′的结果。
【改编】下图是某装置的垂直截面图,虚线A1A2是垂直截面与磁场区边界面的交线,匀强磁场分布在A1A2的右侧区域,磁感应强度B=0.4T,方向垂直纸面向外,A1A2与垂直截面上的水平线夹角为45°。A1A2的左侧,固定的薄板和等大的挡板均水平放置,它们与垂直截面交线分别为S1、S2,相距L=0.2m。在薄板上P处开一小孔,P与A1A2线上点D的水平距离为L。在小孔处装一个电子快门。起初快门开启,一旦有带正电微粒通过小孔,快门立即关闭,此后每隔T=3.0×10-3s开启一次并瞬间关闭。从S1S2之间的某一位置水平发射一速度为v0的带正电微粒,它经过磁场区域后入射到P处小孔。通过小孔的微粒与档板发生碰撞而反弹,反弹速度大小是碰前的0.5倍。(忽略微粒所受重力影响,碰撞过程无电荷转移。已知微粒的荷质比。只考虑纸面上带电微粒的运动)求:
(1)满足题目的微粒在磁场中运动的半径的条件?
(2)经过一次反弹直接从小孔射出的微粒,其初速度v0应为多少?
(3)上述(2)问中微粒从最初水平射入磁场的位置到D点的距离d1和第二次离开磁场的位置到D点的距离d2。
分如图所示,光滑圆弧轨道最低点与光滑斜面在B点用一段光滑小圆弧平滑连接,可认为没有能量的损失,圆弧半径为R=0.5m,斜面的倾角为450,现有一个可视为质点、质量为m=0.1kg的小球从斜面上A点由静止释放,通过圆弧轨道最低点B时对轨道的压力为6N.以B点为坐标原点建立坐标系如图所示(g=l0m/s2)求:
(1)小球最初自由释放位置A离最低点B的高度h.
(2)小球运动到C点时对轨道的压力的大小;
(3)小球从离开C点至第一次落回到斜面上,落点的坐标是多少?
如图,在水平轨道右侧固定半径为R的竖直圆槽形光滑轨道,水平轨道的PQ段铺设特殊材料,调节其初始长度为l,水平轨道左侧有一轻质弹簧左端固定,弹簧处于自然伸长状态.可视为质点的小物块从轨道右侧A点以初速度v0冲上轨道,通过圆形轨道、水平轨道后压缩弹簧,并被弹簧以原速率弹回.已知R=0.4m,l=2.5m,v0=6m/s,物块质量m=1kg,与PQ段间的动摩擦因数μ=0.4,轨道其它部分摩擦不计.取g=10m/s2.求:
(1)物块经过圆轨道最高点B时对轨道的压力;
(2)物块从Q运动到P的时间及弹簧获得的最大弹性势能;
(3)物块仍以v0从右侧冲上轨道,调节PQ段的长度l,当l长度是多少时,物块恰能不脱离轨道返回A点继续向右运动.
如图所示,在同一竖直平面内,一轻质弹簧一端固定,静止斜靠在光滑斜面上,另一自由端恰好与水平线AB齐平,一长为L的轻质细线一端固定在O点,另一端系一质量为的小球,O点到AB的距离为2L.现将细线拉至水平,小球从位置C由静止释放,到达O点正下方时,细线刚好被拉断.当小球运动到A点时恰好能沿斜面方向压缩弹簧,不计碰撞时的机械能损失,弹簧的最大压缩量为 (在弹性限度内),求:
(1)细线所能承受的最大拉力F;
(2)斜面的倾角;
(3)弹簧所获得的最大弹性势能.
如图甲所示,倾斜光滑直轨道AB和一直径d=0.4m的光滑圆轨道BCD平滑连接,AB和BCD相切于B点,CD连线是圆轨道竖直方向的直径(C、D两点分别为圆轨道的最低点和最高点),且∠BOC=θ=37°。一质量m=0.1kg的小滑块(可视为质点)从轨道AB上高H处的某点由静止滑下。已知sin37°=0.6,cos37°=0.8。
(1)若小滑块刚好能通过圆轨道最高点D点,求此时的高度H;
(2)若用力传感器测出滑块经过圆轨道最高点D时对轨道的压力为F,请在如图乙中绘制出压力F与高度H的关系图象;
(3)通过计算判断是否存在某个H值,使得滑块经过最高点D后能直接落到直轨道AB上与圆心等高的点。
如图所示,半径R=0.4 m的光滑圆弧轨道BC固定在竖直平面内,轨道的上端点B和圆心O的连线与水平方向的夹角θ=30°,下端点C为轨道的最低点且与粗糙水平面相切,一根轻质弹簧的右端固定在竖直挡板上。质量m=0.1 kg的小物块(可视为质点)从空中A点以v0=2 m/s的速度被水平抛出,恰好从B点沿轨道切线方向进入轨道,经过C点后沿水平面向右运动至D点时,弹簧被压缩至最短,C、D两点间的水平距离L=1.2m,小物块与水平面间的动摩擦因数μ=0.5,g取10 m/s2。求:
(1)小物块经过圆弧轨道上B点时速度vB的大小;
(2)小物块经过圆弧轨道上C点时对轨道的压力大小;
(3)弹簧的弹性势能的最大值Epm。
如图所示,轮半径r=10 cm的传送带,水平部分AB的长度L=1.5 m,与一圆心在O点、半径R=1 m的竖直光滑圆轨道的末端相切于A点,AB高出水平地面H=1.25 m,一质量m=0.1 kg的小滑块(可视为质点),由圆轨道上的P点从静止释放,OP与竖直线的夹角θ=37°.已知sin 37°=0.6,cos 37°=0.8,g=10 m/s2,滑块与传送带间的动摩擦因数μ=0.1,不计空气阻力.
(1)求滑块对圆轨道末端的压力;
(2)若传送带一直保持静止,求滑块的落地点与B间的水平距离;
(3)若传送带以v0=0.5 m/s的速度沿逆时针方向运行(传送带上部分由B到A运动),求滑块在传送带上滑行过程中产生的内能.
如图所示,在竖直平面内有半径为R="0.4" m的光滑1/4圆弧AB,圆弧B处的切线水平,O点在B点的正下方,B点高度为h="0.8" m。在B端接一长为L=4.0m的木板MN。一质量为m=2.0kg的滑块,与木板间的动摩擦因数为0.1,滑块以某一速度从N点滑到板上,恰好运动到A点。(g取10 m/s2)求:
(1)滑块从N点滑到板上时初速度的大小;
(2)从A点滑回到圆弧的B点时对圆弧的压力;
(3)若将木板右端截去长为ΔL的一段,滑块从A端静止释放后,将滑离木板落在水平面上P点处,要使落地点P距O点最远,ΔL应为多少?
如图所示,水平绝缘粗糙的轨道AB与处于竖直平面内的半圆形绝缘光滑轨道BC平滑连接,半圆形轨道的半径R=0.40m.在轨道所在空间存在水平向右的匀强电场,电场线与轨道所在的平面平行,电场强度E=1.0×104N/C.现有一电荷量q=+1.0×10﹣4C,质量m=0.10kg的带电体(可视为质点),在水平轨道上的P点由静止释放,带电体恰好能通过半圆形轨道的最高点C,然后落至水平轨道上的D点.取g=10m/s2.试求:
(1)带电体在圆形轨道C点的速度大小.
(2)D点到B点的距离xDB.
(3)带电体运动到圆形轨道B点时对圆形轨道的压力大小.
(4)带电体在从P开始运动到落至D点的过程中的最大动能.
如图所示,在光滑绝缘的水平面上,放置两块直径为2L的同心半圆形金属板A、B,两板间的距离很近,半圆形金属板A、B的左边有水平向右的匀强电场E1,半圆形金属板A、B之间存在电场,两板间的电场强度E2可认为大小处处相等,方向都指向O,现从正对A、B板间隙、到两板的一端距离为d处静止释放一个质量为m、电荷量为q的带正电微粒(不计重力),此微粒恰能在两板间运动且不与板发生相互作用.
(1)求半圆形金属板A、B之间电场强度的E2的大小?
(2)从释放微粒开始,经过多长时间微粒的水平位移最大?
如图所示,倾角为θ=45°的粗糙平直导轨与半径为R的光滑圆环轨道相切,切点为B,整个轨道处在竖直平面内.一质量为m的小滑块从导轨上离地面高为h=3R的D处无初速下滑并进入圆环轨道.接着小滑块从圆环最高点C水平飞出,恰好击中导轨上与圆心O等高的P点,不计空气阻力.求:
(1)滑块运动到圆环最高点C时的速度的大小;
(2)滑块运动到圆环最低点时对圆环轨道压力的大小;
(3)滑块在斜面轨道BD间运动的过程中克服摩擦力做的功。
如图,质量为
的小车静止在光滑的水平面上,小车AB段是半径为
的四分之一圆弧光滑轨道,
段是长为
的水平粗糙轨道,两段轨道相切于
点,一质量为
的滑块在小车上从
点静止开始沿轨道滑下,重力加速度为
。
(1)若固定小车,求滑块运动过程中对小车的最大压力;
(2)若不固定小车,滑块仍从
点由静止下滑,然后滑入
轨道,最后从
点滑出小车,已知滑块质量 ,在任一时刻滑块相对地面速度的水平分量是小车速度大小的2倍,滑块与轨道
间的动摩擦因数为
,求:
① 滑块运动过程中,小车的最大速度
;
② 滑块从
运动过程中,小车的位移大小
。
如图所示,水平放置的轻质弹簧左端与竖直墙壁相连,右侧与质量的小物块甲相接触但不粘连,B点为弹簧自由端,光滑水平面AB与倾角的倾斜面BC在B处平滑连接,OCD在同一条竖直线上,CD右端是半径的光滑圆弧,斜面BC与圆弧在C处也平滑连接,物块甲与斜面BC间的动摩擦因数。现用力将物块甲缓慢向左压缩弹簧,使弹簧获得一定能量后撤去外力,物块甲刚好能滑到C点,与此同时用长的细线悬挂于O点的小物块乙从图示位置静止释放,,物块乙到达C点时细线恰好断开且与物块甲发生正碰,碰撞后物块甲恰好对圆弧轨道无压力,物块乙恰好从图中P点离开圆弧轨道,取,,求:
(1)撤去外力时弹簧的弹性势能;
(2)小物块乙的质量M和细线所能承受的最大拉力;
(3)两物块碰撞过程中损失的能量;
(4)小物块乙落到水平面上时的速度大小(保留一位有效数字)。
试题篮
()