一根长为l的丝线吊着一质量为m,带电荷量为q的小球静止在水平向右的匀强电场中,如图所示,丝线与竖直方向成37°角,现突然将该电场方向变为向下且大小不变,不考虑因电场的改变而带来的其他影响(重力加速度为g),求:
(1)匀强电场的电场强度的大小;(sin37°=0.6,cos37°=0.8),
(2)小球经过最低点对丝线的拉力.
如图所示,半径为R的1/4光滑圆弧轨道与光滑水平面相切于B点,O为光滑圆弧的圆心,其中OB竖直,OC水平,且AB=R,整个空间存在水平向右的匀强电场,质量为m的带正电小球从A点静止释放,其所受电场力为重力的3/4倍,重力加速度为g,求:
(1)小球到达C点时对轨道的压力大小;
(2)小球从A点运动到C点过程中最大速度的大小.
(15分)在半径R=4000km的某星球表面,宇航员做了如下实验,实验装置如图甲所示,竖直平面内的光滑轨道由轨道AB和圆弧轨道BC组成,将质量m=0.2kg的小球从轨道上高H处的某点由静止滑下,用力传感器测出小球经过C点时对轨道的压力F,改变H的大小,可测出相应的F大小,F随H的变化关系如图乙所示,忽略星球自转。求:
(1)圆弧轨道BC的半径;(2)该星球的第一宇宙速度。
如图为某游乐场内水上滑梯轨道示意图,整个轨道在同一竖直平面内,轨道表面粗糙,点A距水面的高度为H, B点距水面的高度为R,一质量为m的游客(视为质点)从A点由静止开始滑下,到B点时沿水平切线方向滑离轨道后落在水面D点, OD=2R,不计空气阻力,重力加速度为g,求:
(1) 游客滑到B点的速度vB的大小
(2) 游客运动过程中轨道摩擦力对其所做的功Wf
如图所示,ABCD为竖立放在场强为E=104 V/m的水平匀强电场中的绝缘光滑轨道,其中轨道的BCD部分是半径为R的半圆环,轨道的水平部分与半圆环相切,A为水平轨道上的一点,而且AB=R=0.2 m.把一质量m=0.1 kg、带电量q=10-4 C的小球放在水平轨道的A点,由静止开始释放后,在轨道的内侧运动.(取g=10 m/s2)求:
(1)它到达C点时的速度是多大?
(2)若让小球安全通过D点,开始释放点离B点至少多远?
光滑水平面与一半径为R=2.5 m的竖直光滑圆轨道平滑连接,如图所示,物体可以由圆轨道底端阀门(图中未画出)进入圆轨道,水平轨道上有一轻质弹簧,其左端固定在墙壁上,右端与质量为m=0.5 kg的小球A接触但不相连,今向左推小球A压缩弹簧至某一位置后,由静止释放小球A,测得小球A到达圆轨道最高点时对轨道的压力大小为FN=10 N,g=10 m/s2.
(1)求弹簧的弹性势能Ep;
(2)若弹簧的弹性势能Ep=25 J,小球进入圆轨道后阀门关闭,通过计算说明小球会不会脱离圆轨道.若脱离,求在轨道上何处脱离(可用三角函数表示),若不能脱离,求小球对轨道的最大与最小压力的差ΔF.
如图所示,一质量为m=2 kg的滑块从半径为R=0.2 m的光滑四分之一圆弧轨道的顶端A处由静止滑下,A点和圆弧对应的圆心O点等高,圆弧的底端B与水平传送带平滑相接.已知传送带匀速运行的速度为v0=4 m/s,B点到传送带右端C点的距离为L=2 m.当滑块滑到传送带的右端C时,其速度恰好与传送带的速度相同.(g=10 m/s2),求:
(1)滑块到达底端B时对轨道的压力;
(2)滑块与传送带间的动摩擦因数μ;
(3)此过程中,由于滑块与传送带之间的摩擦而产生的热量Q.
如图所示,半径为r=0.4m的1/4圆形光滑轨道AB固定于竖直平面内,轨道与粗糙的水平地面相切于B点,CDE为固定于竖直平面内的一段内壁光滑的中空方形细管,DE段被弯成以O为圆心、半径R=0.2m的一小段圆弧,管的C端弯成与地面平滑相接,O点位于地面,OE连线竖直.可视为质点的物块b,从A点由静止开始沿轨道下滑,经地面进入细管(b横截面略小于管中空部分的横截面),b滑到E点时受到细管下壁的支持力大小等于所受重力的1/2.已知物块b的质量m = 0.4kg,g取10m/s2.
(1)求物块b滑过E点时的速度大小vE.
(2)求物块b滑过地面BC过程中克服摩擦力做的功Wf.
(3)若将物块b静止放在B点,让另一可视为质点的物块a,从A点由静止开始沿轨道下滑,滑到B点时与b发生弹性正碰,已知a的质量M≥m,求物块b滑过E点后在地面的首次落点到O点的距离范围.
如图所示,倾角为θ=45°的粗糙平直导轨与半径为R的光滑圆环轨道相切,切点为B,整个轨道处在竖直平面内。一质量为m的小滑块从导轨上离地面高为h=3R的D处无初速下滑进入圆环轨道.接着小滑块从圆环最高点C水平飞出,恰好击中导轨上与圆心O等高的P点,不计空气阻力. 求:
(1)滑块运动到圆环最高点C时的速度的大小;
(2)滑块运动到圆环最低点时对圆环轨道压力的大小;
(3)滑块在斜面轨道BD间运动的过程中克服摩擦力做的功。
质量为m的物体由半圆形轨道顶端从静止开始释放,如图所示,A为轨道最低点,A与圆心0在同一竖直线上,已知圆弧轨道半径为R,运动到A点时,物体对轨道的压力大小为2.5mg,求此过程中物体克服摩擦力做的功。
如图所示,长为L的细绳上端系一质量不计的环,环套在光滑水平杆上,在细绳的下端吊一个质量为m的铁球(可视作质点),球离地的高度h=L.现让环与球一起以v=的速度向右运动,在A处环被挡住而立即停止,已知A离右墙的水平距离也为L,当地的重力加速度为g,不计空气阻力.求:
(1)在环被挡住而立即停止时绳对小球的拉力大小;
(2)若在环被挡住后,细绳突然断裂,则在以后的运动过程中,球的第一次碰撞点离墙角B点的距离是多少?
“太极球”是近年来在广大市民中较流行的一种健身器材.做该项运动时,健身者半马步站立,手持太极球拍,拍上放一橡胶太极球,健身者舞动球拍时,球却不会掉落地上.现将太极球简化成如图甲所示的平板和小球,熟练的健身者让球在竖直面内始终不脱离板而做匀速圆周运动,且在运动到图中的A、B、C、D位置时小球与板间无相对运动趋势.A为圆周的最高点,C为最低点,B、D与圆心O等高,圆的半径为R.已知小球的重力为1 N,不计平板的重力,且在A处板对小球的作用力为F.
(1)设小球在A处的速度大小为v,写出在A处板对小球的作用力与小球速度大小的关系式;
(2)求在C处板对小球的作用力比在A处大多少?
(3)当球运动到B、D位置时,板与水平方向需有一定的夹角θ,才能使小球在竖直面内做匀速圆周运动,请作出tan θ-F的关系图象.
如图所示,一块足够大的光滑平板放置在水平面上,能绕水平固定轴MN调节其与水平面所成的倾角。板上一根长为="0." 60m的轻细绳,它的一端系住一质量为0.2kg的小球P,另一端固定在板上的O点。先将轻绳平行于水平轴MN拉直,然后给小球一沿着平板并与轻绳垂直的初速度v0=3.0m/s。重力加速度g=l0
(1)求当平板的倾角固定为90º,小球经过运动轨迹的最低点时轻细绳中的拉力大小;
(2)当平板的倾角固定为α时,若小球能保持在板面内作圆周运动,倾角α的值应在什么范围内?
(12分)如图所示,一半径为R的绝缘圆形轨道竖直放置,圆轨道最低点与一条水平轨道相连,轨道都是光滑的.轨道所在空间存在水平向右的匀强电场,场强为E.从水平轨道上的A点由静止释放一质量为m的带正电的小球,为使小球刚好在圆轨道内做圆周运动,求释放点A距圆轨道最低点B的距离s。已知小球受到的电场力大小等于小球重力的倍。
试题篮
()