优题课 - 聚名师,上好课(www.youtike.com)
  首页 / 试题库 / 高中物理试题 / 综合题
高中物理

图6,金属棒P从高h处以速度v0沿光滑弧形平行导轨下滑,进入轨道的水平部分后,在自下而上垂直于导轨平面的匀强磁场中运动,磁感应强度为B.在轨道的水平部分原来静止放着另一根金属棒Q,已知mPmQ=3∶4,假设导轨足够长.试问:

(1)当P棒进入磁场后,PQ棒各做什么运动?
(2)P棒刚进入磁场时,PQ两棒加速度之比为多少?
(3)若两棒始终没有碰撞,求PQ的最大速度;
(4)在整个过程中回路中消耗的电能是多少?(已知mP

  • 题型:未知
  • 难度:未知

如图14所示,水平面上平行放置的光滑金属导轨相距L="0.2" m,导轨置于磁感应强度B="0.5" T、方向与导轨平面垂直的匀强磁场中,导轨左端接阻值为R="1.5" Ω的电阻,导轨电阻可忽略不计.今把电阻r="0.5" Ω的导体棒MN放在导轨上,棒与导轨垂直,接触良好.若导体棒以v="10" m/s的速度匀速向右运动,求:

图14
(1)导体棒中感应电动势的大小及通过MN棒的电流大小;
(2)导体棒两端的电势差;
(3)维持导体棒做匀速运动所施加的向右的水平外力的大小.

  • 题型:未知
  • 难度:未知

长为L的金属棒ab,绕b端在垂直于匀强磁场的平面内以角速度ω匀速转动,磁感应强度为B,如图1所示.求ab两端的电势差.

图1

  • 题型:未知
  • 难度:未知

近期《科学》中文版的文章介绍了一种新技术——航天飞缆,航天飞缆是用柔性缆索将两个物体连接起来在太空飞行的系统.飞缆系统在太空飞行中能为自身提供电能和拖曳力,它还能清理“太空垃圾”等.从1967年至1999年的17次试验中,飞缆系统试验已获得部分成功.该系统的工作原理可用物理学的基本定律来解释.

图15
图15为飞缆系统的简化模型示意图,图中两个物体PQ的质量分别为mPmQ,柔性金属缆索长为l,外有绝缘层,系统在近地轨道做圆周运动,运动过程中Q距地面高为h.设缆索总保持指向地心,P的速度为vP.已知地球半径为R,地面的重力加速度为g.
(1)飞缆系统在地磁场中运动,地磁场在缆索所在处的磁感应强度大小为B,方向垂直于纸面向外.设缆索中无电流,问缆索PQ哪端电势高?此问中可认为缆索各处的速度均近似等于vP,求PQ两端的电势差;
(2)设缆索的电阻为R1,如果缆索两端物体PQ通过周围的电离层放电形成电流,相应的电阻为R2,求缆索所受的安培力多大;
(3)求缆索对Q的拉力FQ.

来源:法拉第电磁感应定律测试
  • 题型:未知
  • 难度:未知

如图2所示,两根平行的金属导轨,固定在同一水平面上,磁感应强度B="0.05" T的匀强磁场与导轨所在平面垂直(图中未画出),导轨的电阻很小,可忽略不计.导轨间的距离l="0.20" m.两根质量均为m="0.10" kg的平行金属杆甲、乙可在导轨上无摩擦地滑动,滑动过程中与导轨保持垂直,每根金属杆的电阻均为R="0.50" Ω.在t=0时刻,两杆都处于静止状态.现有一与导轨平行、大小为0.20 N的恒力F作用于金属杆甲上,使金属杆在导轨上滑动.经过t="5.0" s,金属杆甲的加速度为a="1.37" m/s2.问此时两金属杆的速度各为多少?

图2

来源:法拉第电磁感应定律测试
  • 题型:未知
  • 难度:未知

如图14所示,PR是一长为L="0.64" m 的绝缘平板,固定在水平地面上,挡板R固定在平板的右端.整个空间有一个平行于PR的匀强电场E,在板的右半部分有一个垂直于纸面向里的匀强磁场B,磁场的宽度为0.32 m.一个质量m=0.50×10-3 kg、带电荷量q=5.0×102 C的小物体,从板的P端由静止开始向右做匀加速运动,从D点进入磁场后恰能做匀速直线运动.当物体碰到挡板R后被弹回,若在碰撞瞬间撤去电场(不计撤掉电场对原磁场的影响),物体返回时在磁场中仍做匀速运动,离开磁场后做减速运动,停在C点,PC=L/4.若物体与平板间的动摩擦因数μ=0.20,取g="10" m/s2.

图14
(1)判断电场的方向及物体带正电还是带负电;
(2)求磁感应强度B的大小;
(3)求物体与挡板碰撞过程中损失的机械能.

来源:带电粒子在复合场中的运动测试
  • 题型:未知
  • 难度:未知

如图13所示的坐标系,x轴沿水平方向,y轴沿竖直方向.在x轴上方空间的第一、第二象限内,既无电场也无磁场;在第三象限,存在沿y轴正方向的匀强电场和垂直xy平面(纸面)向里的匀强磁场;在第四象限,存在沿y轴负方向、场强大小与第三象限电场场强相等的匀强电场.一质量为m、电荷量为q的带电质点,从y轴上y=h处的P1点以一定的水平初速度沿x轴负方向进入第二象限,然后经过x轴上x=-2h处的P2点进入第三象限,带电质点恰好能做匀速圆周运动.之后经过y轴上y=-2h处的P3点进入第四象限.已知重力加速度为g.求:

图13
(1)粒子到达P2点时速度的大小和方向;
(2)第三象限空间中电场强度和磁感应强度的大小;
(3)带电质点在第四象限空间运动过程中最小速度的大小和方向.

来源:带电粒子在复合场中的运动测试
  • 题型:未知
  • 难度:未知

磁流体发电是一种新型发电方式,图4中图(1)和图(2)是其工作原理示意图.图(1)中的长方体是发电导管,其中空部分的长、高、宽分别为lab,前后两个侧面是绝缘体,上下两个侧面是电阻可略的导体电极,这两个电极与负载电阻RL相连.整个发电导管处于图(2)中磁场线圈产生的匀强磁场里,磁感应强度为B,方向如图所示.发电导管内有电阻率为ρ的高温、高速电离气体沿导管向右流动,并通过专用管道导出.由于运动的电离气体受到磁场作用,产生了电动势.发电导管内电离气体流速随磁场有无而不同.设发电导管内电离气体流速处处相同,且不存在磁场时电离气体流速为v0,电离气体所受摩擦阻力总与流速成正比,发电导管两端的电离气体压强差Δp维持恒定,求:

图4
(1)不存在磁场时电离气体所受的摩擦阻力F为多大?
(2)磁流体发电机的电动势E的大小;
(3)磁流体发电机发电导管的输入功率P.

来源:带电粒子在复合场中的运动测试
  • 题型:未知
  • 难度:未知

如图2所示,在互相垂直的水平方向的匀强电场(E已知)和匀强磁场(B已知)中,有一固定的竖直绝缘杆,杆上套有一个质量为m、电荷量为+q的小球,它们之间的动摩擦因数为μ.现由静止释放小球,试分析小球运动的加速度和速度的变化情况,并求出最大速度vm(mg>μgE).

图2

来源:带电粒子在复合场中的运动测试
  • 题型:未知
  • 难度:未知

在同时存在匀强电场和匀强磁场的空间中取正交坐标系Oxyz(z轴正方向竖直向上),如图17所示.已知电场方向沿z轴正方向,场强大小为E;磁场方向沿y轴正方向,磁感应强度的大小为B;重力加速度为g.问:一质量为m、带电荷量为+q的从原点出发的质点能否在坐标轴(xyz)上以速度v做匀速运动?若能,mqEBvg应满足怎样的关系;若不能,请说明理由.

图17

来源:磁场对运动电荷的作用,质谱仪,回旋加速器测试
  • 题型:未知
  • 难度:未知

如图16所示,在空间存在这样一个磁场区域,以MN为界,上部分的匀强磁场的磁感应强度为B1,下部分的匀强磁场的磁感应强度为B2,B1=2B2=2B0,方向均垂直纸面向内,且磁场区域足够大.在距离界线为hP点有一带负电荷的离子处于静止状态,某时刻该离子分解成为带电的粒子A和不带电的粒子B,粒子A质量为m、带电荷量为q,以平行于界线MN的速度向右运动,经过界线MN时的速度方向与界线成60°角,进入下部分磁场.当粒子B沿与界线平行的直线到达位置Q点时,恰好又与粒子A相遇.不计粒子的重力,求:

图16
(1)PQ两点间距离;
(2)粒子B的质量.

来源:磁场对运动电荷的作用,质谱仪,回旋加速器测试
  • 题型:未知
  • 难度:未知

电视机的显像管中,电子束的偏转是利用磁偏转技术实现的.电子束经过电压为U的加速电场后,进入一圆形匀强磁场区,如图14所示.磁场方向垂直于圆面.磁场区的中心为O,半径为r.当不加磁场时,电子束将通过O点而打到屏幕的中心M点.为了让电子束射到屏幕边缘P,需要加磁场,使电子束偏转一已知角度θ,此时磁场的磁感应强度B应为多大?

图14

来源:磁场对运动电荷的作用,质谱仪,回旋加速器测试
  • 题型:未知
  • 难度:未知

回旋加速器是用来加速一群带电粒子使它们获得很大动能的仪器,其核心部分是两个D形金属扁盒.两盒分别和一高频交流电源两极相连,以便在盒间的窄缝中形成匀强电场,使粒子每次穿过狭缝都得到加速.两盒放在匀强磁场中,磁场方向垂直于盒底面,粒子源置于盒的圆心附近.若粒子源射出的离子电荷量为q、质量为m,粒子最大回旋半径为Rm,其运动轨迹如图5所示,问:

图5
(1)盒内有无电场?
(2)粒子在盒内做何种运动?
(3)所加交流电频率应是多大?粒子角速度为多大?
(4)粒子离开加速器时速度为多大?最大动能为多少?
(5)设两D形盒间电场的电势差为U,盒间距离为d,其电场均匀,求加速到上述能量所需的时间.

来源:磁场对运动电荷的作用,质谱仪,回旋加速器测试
  • 题型:未知
  • 难度:未知

一匀强磁场,磁场方向垂直于xy平面,在xy平面上,磁场分布在以O为中心的一个圆形区域内.一个质量为m、电荷量为q的带电粒子,由原点O开始运动,初速度为v,方向沿x轴正方向,后来,粒子经过y轴上的P点,此时速度方向与y轴的夹角为30°,PO的距离为l,如图2所示.不计重力的影响,求磁场的磁感应强度B的大小和xy平面上的磁场区域的半径R.
图2

来源:磁场对运动电荷的作用,质谱仪,回旋加速器测试
  • 题型:未知
  • 难度:未知

如图13甲所示,一个足够长的“U”形金属导轨NMPQ固定在水平面内,MNPQ两导轨间的距离为L="0.50" m.一根质量为m="0.50" kg的均匀金属导体棒ab静止在导轨上且与导轨接触良好,abMP恰好围成一个正方形.该轨道平面处在磁感应强度大小可以调节的竖直向上的匀强磁场中.ab棒的电阻为R="0.10" Ω,其他各部分电阻均不计.开始时,磁感应强度B0="0.50" T.

图13
(1)若保持磁感应强度B0的大小不变,从t=0时刻开始,给ab棒施加一个水平向右的拉力,使它做匀加速直线运动.此拉力T的大小随时间t的变化关系如图13乙所示.求ab棒做匀加速运动的加速度及ab棒与导轨间的滑动摩擦力.
(2)若从t=0时刻开始,调节磁感应强度的大小使其以ΔBΔt="0.20" T/s的变化率均匀增加,求经过多长时间ab棒开始滑动?此时通过ab棒的电流大小和方向如何?(ab棒与导轨间的最大静摩擦力和滑动摩擦力相等)

来源:磁感应强度,磁场对电流的作用测试
  • 题型:未知
  • 难度:未知

高中物理综合题