如图11-16所示,直角三角形导线框ABC,处于磁感强度为B的匀强磁场中,线框在纸面上绕B点以匀角速度ω作顺时针方向转动,∠B =60°,∠C=90°,AB=l,求A,C两端的电势差UAC。
共有100匝的矩形线圈,在磁感强度为0.1T的匀强磁场中以角速度ω=10rad/s绕线圈的中心轴旋转。已知线圈的长边a=20cm,短边b=10cm,线圈总电阻为2Ω。求(2)线圈平面转到与磁场方向夹角60°时,线圈受到的电磁力矩。
如图11-9所示,一个U形导体框架,其宽度L=1m,框架所在平面与水平面的夹用α=30°。其电阻可忽略不计。设匀强磁场与U形框架的平面垂直。匀强磁场的磁感强度B=0.2T。今有一条形导体ab,其质量为m=0.5kg,有效电阻R=0.1Ω,跨接在U形框架上,并且能无摩擦地滑动,求:
(1)由静止释放导体,导体ab下滑的最大速度vm;
(2)在最大速度vm时,在ab上释放的电功率。(g=10m/s2)。
如图11-7所示装置,导体棒AB,CD在相等的外力作用下,沿着光滑的轨道各朝相反方向以0.lm/s的速度匀速运动。匀强磁场垂直纸面向里,磁感强度B=4T,导体棒有效长度都是L=0.5m,电阻R=0.5Ω,导轨上接有一只R′=1Ω的电阻和平行板电容器,它的两板间距相距1cm,试求:(l)电容器及板间的电场强度的大小和方向;
如图11-4所示,竖直平面内有足够长的金属导轨,轨距0.2m,金属导体ab可在导轨上无摩擦地上下滑动,ab的电阻为0.4Ω,导轨电阻不计,导轨ab的质量为0.2g,垂直纸面向里的匀强磁场的磁应强度为0.2T,且磁场区域足够大,当ab导体自由下落0.4s时,突然接通电键K,则:(1)试说出K接通后,ab导体的运动情况。(2)ab导体匀速下落的速度是多少?(g取10m/s2)
如图11-3所示,在跟匀强磁场垂直的平面内放置一个折成锐角的裸导线MON,∠MON=α。在它上面搁置另一根与ON垂直的导线PQ,PQ紧贴MO,ON并以平行于ON的速度V,从顶角O开始向右匀速滑动,设裸导线单位长度的电阻为R0,磁感强度为B,求回路中的感应电流。
如图11-2所示,以边长为50cm的正方形导线框,放置在B=0.40T的匀强磁场中。已知磁场方向与水平方向成37°角,线框电阻为0.10Ω,求线框绕其一边从水平方向转至竖直方向的过程中通过导线横截面积的电量。
如图所示有三根长度皆为l=1.00 m的不可伸长的绝缘轻线,其中两根的一端固定在天花板上的O点,另一端分别挂有质量皆为m=1.00×kg的带电小球A和B,它们的电量分别为一q和+q,q=1.00×C。A、B之间用第三根线连接起来。空间中存在大小为E=1.00×106N/C的匀强电场,场强方向沿水平向右,平衡时A、B球的位置如图所示。现将O、B之间的线烧断,由于有空气阻力,A、B球最后会达到新的平衡位置。求最后两球的机械能与电势能的总和与烧断前相比改变了多少。(不计两带电小球间相互作用的静电力)
倾角为30°的直角三角形底边长为2L,底边处在水平位置,斜边为光滑绝缘导轨,现在底边中点O处固定一正电荷Q,让一个质量为m的带正电质点q从斜面顶端A沿斜边滑下(不脱离斜面),如图所示,已测得它滑到B在斜面上的垂足D处时速度为v,加速度为a,方向沿斜面向下,问该质点滑到斜边底端C点时的速度和加速度各为多大?
. 如图,在宽度分别为和的两个毗邻的条形区域分别有匀强磁场和匀强电场,磁场方向垂直于纸面向里,电场方向与电、磁场分界线平行向右。一带正电荷的粒子以速率v从磁场区域上边界的P点斜射入磁场,然后以垂直于电、磁场分界线的方向进入电场,最后从电场边界上的Q点射出。已知PQ垂直于电场方向,粒子轨迹与电、磁场分界线的交点到PQ的距离为d。不计重力,求电场强度与磁感应强度大小之比及粒子在磁场与电场中运动时间之比。
如图所示,真空中一质量为m,带电量为-q的液滴以初速度为v0,仰角α射入匀强电场中以后,做直线运动,求:
(1)所需电场的最小场强的大小,方向。
(2)若要使液滴的加速度最小,求所加的电场场强大小和方向。
长木板AB放在水平面上如图所示,它的下表面光滑而上表面粗糙,一个质量为、电量为的小物块C从A端以某一初速起动向右滑行,当存在向下的匀强电场时,C恰能滑到B端,当此电场改为向上时,C只能滑到AB的中点,求此电场的场强。
在一高为h的绝缘光滑水平桌面上,有一个带电量为+q、质量为m的带电小球静止,小球到桌子右边缘的距离为s,突然在空间中施加一个水平向右的匀强电场E,且qE=" 2" mg,如图所示,求:
(1)小球经多长时间落地?
(2)小球落地时的速度。
如图所示,间距为的两条足够长的平行金属导轨与水平面的夹角为,导轨光滑且电阻忽略不计.场强为的条形匀强磁场方向与导轨平面垂直,磁场区域的宽度为,间距为.两根质量均为、有效电阻均为的导体棒和放在导轨上,并与导轨垂直. (设重力加速度为)
(1)若进入第2个磁场区域时,以与同样的速度进入第1个磁场区域,求穿过第1个磁场区域过程中增加的动能.
(2)若进入第2个磁场区域时,恰好离开第1个磁场区域;此后离开第2个磁场区域时,又恰好进入第2个磁场区域.且.在任意一个磁场区域或无磁场区域的运动时间均相.求穿过第2个磁场区域过程中,两导体棒产生的总焦耳热.
(3)对于第(2)问所述的运动情况,求穿出第个磁场区域时的速率
(15分)抛体运动在各类体育运动项目中很常见,如乒乓球运动.现讨论乒乓球发球问题,设球台长2L、网高h,乒乓球反弹前后水平分速度不变,竖直分速度大小不变、方向相反,且不考虑乒乓球的旋转和空气阻力.(设重力加速度为g)
(1)若球在球台边缘O点正上方高度为h1处以速度,水平发出,落在球台的P1点(如图实线所示),求P1点距O点的距离x1。.
(2)若球在O点正上方以速度水平发出,恰好在最高点时越过球网落在球台的P2(如图虚线所示),求的大小.
(3)若球在O正上方水平发出后,球经反弹恰好越过球网且刚好落在对方球台边缘P3,求发球点距O点的高度h3.
试题篮
()