某水果店销售苹果和梨,购买1千克苹果和3千克梨共需26元,购买2千克苹果和1千克梨共需22元.
(1)求每千克苹果和每千克梨的售价;
(2)如果购买苹果和梨共15千克,且总价不超过100元,那么最多购买多少千克苹果?
为了落实党的“精准扶贫”政策, 、 两城决定向 、 两乡运送肥料以支持农村生产,已知 、 两城共有肥料500吨,其中 城肥料比 城少100吨,从 城往 、 两乡运肥料的费用分别为20元 吨和25元 吨;从 城往 、 两乡运肥料的费用分别为15元 吨和24元 吨.现 乡需要肥料240吨, 乡需要肥料260吨.
(1) 城和 城各有多少吨肥料?
(2)设从 城运往 乡肥料 吨,总运费为 元,求出最少总运费.
(3)由于更换车型,使 城运往 乡的运费每吨减少 元,这时怎样调运才能使总运费最少?
麦积山石窟是世界文化遗产,国家 级旅游景区,中国四大石窟之一.在2018年中国西北旅游营销大会暨旅游装备展上,商家按标价销售某种工艺品时,每件可获利45元;按标价的八五折销售该工艺品8件与将标价降低35元销售该工艺品12件所获利润相等.
(1)该工艺品每件的进价、标价分别是多少元?
(2)若每件工艺品按此进价进货、标价销售,商家每天可售出该工艺品100件;若每件工艺品降价1元,则每天可多售出该工艺品4件.问:每件工艺品降价多少元销售,每天获得的利润最大?获得的最大利润是多少元?
某服装专卖店计划购进 , 两种型号的精品服装.已知2件 型服装和3件 型服装共需4600元;1件 型服装和2件 型服装共需2800元.
(1)求 , 型服装的单价;
(2)专卖店要购进 , 两种型号服装60件,其中 型件数不少于 型件数的2倍,如果 型打七五折,那么该专卖店至少需要准备多少货款?
为解决中小学大班额问题,东营市各县区今年将改扩建部分中小学,某县计划对 、 两类学校进行改扩建,根据预算,改扩建2所 类学校和3所 类学校共需资金7800万元,改扩建3所 类学校和1所 类学校共需资金5400万元.
(1)改扩建1所 类学校和1所 类学校所需资金分别是多少万元?
(2)该县计划改扩建 、 两类学校共10所,改扩建资金由国家财政和地方财政共同承担.若国家财政拨付资金不超过11800万元;地方财政投入资金不少于4000万元,其中地方财政投入到 、 两类学校的改扩建资金分别为每所300万元和500万元.请问共有哪几种改扩建方案?
某校计划为教师购买甲、乙两种词典.已知购买1本甲种词典和2本乙种词典共需170元,购买2本甲种词典和3本乙种词典共需290元.
(1)求每本甲种词典和每本乙种词典的价格分别为多少元?
(2)学校计划购买甲种词典和乙种词典共30本,总费用不超过1600元,那么最多可购买甲种词典多少本?
某商场销售 , 两种品牌的教学设备,这两种教学设备的进价和售价如表所示
|
|
|
进价(万元 套) |
1.5 |
1.2 |
售价(万元 套) |
1.65 |
1.4 |
该商场计划购进两种教学设备若干套,共需66万元,全部销售后可获毛利润9万元.
(1)该商场计划购进 , 两种品牌的教学设备各多少套?
(2)通过市场调研,该商场决定在原计划的基础上,减少 种设备的购进数量,增加 种设备的购进数量,已知 种设备增加的数量是 种设备减少的数量的1.5倍.若用于购进这两种教学设备的总资金不超过69万元,问 种设备购进数量至多减少多少套?
阅读感悟:
有些关于方程组的问题,欲求的结果不是每一个未知数的值,而是关于未知数的代数式的值,如以下问题:
已知实数 、 满足 ①, ②,求 和 的值.
本题常规思路是将①②两式联立组成方程组,解得 、 的值再代入欲求值的代数式得到答案,常规思路运算量比较大.其实,仔细观察两个方程未知数的系数之间的关系,本题还可以通过适当变形整体求得代数式的值,如由① ②可得 ,由① ② 可得 .这样的解题思想就是通常所说的"整体思想".
解决问题:
(1)已知二元一次方程组 则 , ;
(2)某班级组织活动购买小奖品,买20支铅笔、3块橡皮、2本日记本共需32元,买39支铅笔、5块橡皮、3本日记本共需58元,则购买5支铅笔、5块橡皮、5本日记本共需多少元?
(3)对于实数 、 ,定义新运算: ,其中 、 、 是常数,等式右边是通常的加法和乘法运算.已知 , ,那么 .
某公司分别在 , 两城生产同种产品,共100件. 城生产产品的总成本 (万元)与产品数量 (件 之间具有函数关系 .当 时, ;当 时, . 城生产产品的每件成本为70万元.
(1)求 , 的值;
(2)当 , 两城生产这批产品的总成本的和最少时,求 , 两城各生产多少件?
(3)从 城把该产品运往 , 两地的费用分别为 万元 件和3万元 件;从 城把该产品运往 , 两地的费用分别为1万元 件和2万元 件. 地需要90件, 地需要10件,在(2)的条件下,直接写出 , 两城总运费的和的最小值(用含有 的式子表示).
为支援抗疫前线,某省红十字会采购甲、乙两种抗疫物资共540吨,甲物资单价为3万元 吨,乙物资单价为2万元 吨,采购两种物资共花费1380万元.
(1)求甲、乙两种物资各采购了多少吨?
(2)现在计划安排 , 两种不同规格的卡车共50辆来运输这批物资.甲物资7吨和乙物资3吨可装满一辆 型卡车;甲物资5吨和乙物资7吨可装满一辆 型卡车.按此要求安排 , 两型卡车的数量,请问有哪几种运输方案?
重庆小面是重庆美食的名片之一,深受外地游客和本地民众欢迎.某面馆向食客推出经典特色重庆小面,顾客可到店食用(简称"堂食"小面),也可购买搭配佐料的袋装生面(简称"生食"小面).已知3份"堂食"小面和2份"生食"小面的总售价为31元,4份"堂食"小面和1份"生食"小面的总售价为33元.
(1)求每份"堂食"小面和"生食"小面的价格分别是多少元?
(2)该面馆在4月共卖出"堂食"小面4500份,"生食"小面2500份.为回馈广大食客,该面馆从5月1日起每份"堂食"小面的价格保持不变,每份"生食"小面的价格降低 .统计5月的销量和销售额发现:"堂食"小面的销量与4月相同,"生食"小面的销量在4月的基础上增加 ,这两种小面的总销售额在4月的基础上增加 .求 的值.
我市某中学计划举行以“奋斗百年路,启航新征程”为主题的知识竞赛,并对获奖的同学给予奖励.现要购买甲、乙两种奖品,已知1件甲种奖品和2件乙种奖品共需40元,2件甲种奖品和3件乙种奖品共需70元.
(1)求甲、乙两种奖品的单价;
(2)根据颁奖计划,该中学需甲、乙两种奖品共60件,且甲种奖品的数量不少于乙种奖品数量的 ,应如何购买才能使总费用最少?并求出最少费用.
《九章算术》是中国古代数学专著,在数学上有其独到的成就,不仅最早提到了分数问题,也首先记录了“盈不足”等问题.如有一道阐述“盈不足”的问题,原文如下:今有共买鸡,人出九,盈十一;人出六,不足十六.问人数、鸡价各几何?译文为:现有若干人合伙出钱买鸡,如果每人出9文钱,就会多11文钱;如果每人出6文钱,又会缺16文钱.问买鸡的人数、鸡的价格各是多少?请解答上述问题.
众志成城抗疫情,全国人民在行动.某公司决定安排大、小货车共20辆,运送260吨物资到 地和 地,支援当地抗击疫情.每辆大货车装15吨物资,每辆小货车装10吨物资,这20辆货车恰好装完这批物资.已知这两种货车的运费如下表:
目的地 车型 |
地(元 辆) |
地(元 辆) |
大货车 |
900 |
1000 |
小货车 |
500 |
700 |
现安排上述装好物资的20辆货车(每辆大货车装15吨物资,每辆小货车装10吨物资)中的10辆前往 地,其余前往 地,设前往 地的大货车有 辆,这20辆货车的总运费为 元.
(1)这20辆货车中,大货车、小货车各有多少辆?
(2)求 与 的函数解析式,并直接写出 的取值范围;
(3)若运往 地的物资不少于140吨,求总运费 的最小值.
试题篮
()