优题课 - 聚名师,上好课(www.youtike.com)
  首页 / 试题库 / 初中数学试题 / 二元一次方程组的应用 / 解答题
初中数学

某水果店销售苹果和梨,购买1千克苹果和3千克梨共需26元,购买2千克苹果和1千克梨共需22元.

(1)求每千克苹果和每千克梨的售价;

(2)如果购买苹果和梨共15千克,且总价不超过100元,那么最多购买多少千克苹果?

来源:2020年江苏省常州市中考数学试卷
  • 题型:未知
  • 难度:未知

为了落实党的“精准扶贫”政策, A B 两城决定向 C D 两乡运送肥料以支持农村生产,已知 A B 两城共有肥料500吨,其中 A 城肥料比 B 城少100吨,从 A 城往 C D 两乡运肥料的费用分别为20元 / 吨和25元 / 吨;从 B 城往 C D 两乡运肥料的费用分别为15元 / 吨和24元 / 吨.现 C 乡需要肥料240吨, D 乡需要肥料260吨.

(1) A 城和 B 城各有多少吨肥料?

(2)设从 A 城运往 C 乡肥料 x 吨,总运费为 y 元,求出最少总运费.

(3)由于更换车型,使 A 城运往 C 乡的运费每吨减少 a ( 0 < a < 6 ) 元,这时怎样调运才能使总运费最少?

来源:2018年黑龙江省七台河市中考数学试卷(农垦、森工用)
  • 题型:未知
  • 难度:未知

麦积山石窟是世界文化遗产,国家 AAAAA 级旅游景区,中国四大石窟之一.在2018年中国西北旅游营销大会暨旅游装备展上,商家按标价销售某种工艺品时,每件可获利45元;按标价的八五折销售该工艺品8件与将标价降低35元销售该工艺品12件所获利润相等.

(1)该工艺品每件的进价、标价分别是多少元?

(2)若每件工艺品按此进价进货、标价销售,商家每天可售出该工艺品100件;若每件工艺品降价1元,则每天可多售出该工艺品4件.问:每件工艺品降价多少元销售,每天获得的利润最大?获得的最大利润是多少元?

来源:2018年甘肃省天水市中考数学试卷
  • 题型:未知
  • 难度:未知

某服装专卖店计划购进 A B 两种型号的精品服装.已知2件 A 型服装和3件 B 型服装共需4600元;1件 A 型服装和2件 B 型服装共需2800元.

(1)求 A B 型服装的单价;

(2)专卖店要购进 A B 两种型号服装60件,其中 A 型件数不少于 B 型件数的2倍,如果 B 型打七五折,那么该专卖店至少需要准备多少货款?

来源:2020年内蒙古通辽市中考数学试卷
  • 题型:未知
  • 难度:未知

为解决中小学大班额问题,东营市各县区今年将改扩建部分中小学,某县计划对 A B 两类学校进行改扩建,根据预算,改扩建2所 A 类学校和3所 B 类学校共需资金7800万元,改扩建3所 A 类学校和1所 B 类学校共需资金5400万元.

(1)改扩建1所 A 类学校和1所 B 类学校所需资金分别是多少万元?

(2)该县计划改扩建 A B 两类学校共10所,改扩建资金由国家财政和地方财政共同承担.若国家财政拨付资金不超过11800万元;地方财政投入资金不少于4000万元,其中地方财政投入到 A B 两类学校的改扩建资金分别为每所300万元和500万元.请问共有哪几种改扩建方案?

来源:2017年山东省东营市中考数学试卷
  • 题型:未知
  • 难度:未知

某校计划为教师购买甲、乙两种词典.已知购买1本甲种词典和2本乙种词典共需170元,购买2本甲种词典和3本乙种词典共需290元.

(1)求每本甲种词典和每本乙种词典的价格分别为多少元?

(2)学校计划购买甲种词典和乙种词典共30本,总费用不超过1600元,那么最多可购买甲种词典多少本?

来源:2020年辽宁省抚顺市中考数学试卷
  • 题型:未知
  • 难度:未知

某商场销售 A B 两种品牌的教学设备,这两种教学设备的进价和售价如表所示

A

B

进价(万元 / 套)

1.5

1.2

售价(万元 / 套)

1.65

1.4

该商场计划购进两种教学设备若干套,共需66万元,全部销售后可获毛利润9万元.

(1)该商场计划购进 A B 两种品牌的教学设备各多少套?

(2)通过市场调研,该商场决定在原计划的基础上,减少 A 种设备的购进数量,增加 B 种设备的购进数量,已知 B 种设备增加的数量是 A 种设备减少的数量的1.5倍.若用于购进这两种教学设备的总资金不超过69万元,问 A 种设备购进数量至多减少多少套?

来源:2016年浙江省宁波市中考数学试卷
  • 题型:未知
  • 难度:未知

阅读感悟:

有些关于方程组的问题,欲求的结果不是每一个未知数的值,而是关于未知数的代数式的值,如以下问题:

已知实数 x y 满足 3 x - y = 5 ①, 2 x + 3 y = 7 ②,求 x - 4 y 7 x + 5 y 的值.

本题常规思路是将①②两式联立组成方程组,解得 x y 的值再代入欲求值的代数式得到答案,常规思路运算量比较大.其实,仔细观察两个方程未知数的系数之间的关系,本题还可以通过适当变形整体求得代数式的值,如由① - ②可得 x - 4 y = - 2 ,由① + × 2 可得 7 x + 5 y = 19 .这样的解题思想就是通常所说的"整体思想".

解决问题:

(1)已知二元一次方程组 2 x + y = 7 , x + 2 y = 8 , x - y =   - 1   x + y =   

(2)某班级组织活动购买小奖品,买20支铅笔、3块橡皮、2本日记本共需32元,买39支铅笔、5块橡皮、3本日记本共需58元,则购买5支铅笔、5块橡皮、5本日记本共需多少元?

(3)对于实数 x y ,定义新运算: x * y = ax + by + c ,其中 a b c 是常数,等式右边是通常的加法和乘法运算.已知 3 * 5 = 15 4 * 7 = 28 ,那么 1 * 1 =   

来源:2020年江苏省扬州市中考数学试卷
  • 题型:未知
  • 难度:未知

某公司分别在 A B 两城生产同种产品,共100件. A 城生产产品的总成本 y (万元)与产品数量 x (件 ) 之间具有函数关系 y = a x 2 + bx .当 x = 10 时, y = 400 ;当 x = 20 时, y = 1000 B 城生产产品的每件成本为70万元.

(1)求 a b 的值;

(2)当 A B 两城生产这批产品的总成本的和最少时,求 A B 两城各生产多少件?

(3)从 A 城把该产品运往 C D 两地的费用分别为 m 万元 / 件和3万元 / 件;从 B 城把该产品运往 C D 两地的费用分别为1万元 / 件和2万元 / 件. C 地需要90件, D 地需要10件,在(2)的条件下,直接写出 A B 两城总运费的和的最小值(用含有 m 的式子表示).

来源:2020年湖北省武汉市中考数学试卷
  • 题型:未知
  • 难度:未知

为支援抗疫前线,某省红十字会采购甲、乙两种抗疫物资共540吨,甲物资单价为3万元 / 吨,乙物资单价为2万元 / 吨,采购两种物资共花费1380万元.

(1)求甲、乙两种物资各采购了多少吨?

(2)现在计划安排 A B 两种不同规格的卡车共50辆来运输这批物资.甲物资7吨和乙物资3吨可装满一辆 A 型卡车;甲物资5吨和乙物资7吨可装满一辆 B 型卡车.按此要求安排 A B 两型卡车的数量,请问有哪几种运输方案?

来源:2020年湖南省郴州市中考数学试卷
  • 题型:未知
  • 难度:未知

重庆小面是重庆美食的名片之一,深受外地游客和本地民众欢迎.某面馆向食客推出经典特色重庆小面,顾客可到店食用(简称"堂食"小面),也可购买搭配佐料的袋装生面(简称"生食"小面).已知3份"堂食"小面和2份"生食"小面的总售价为31元,4份"堂食"小面和1份"生食"小面的总售价为33元.

(1)求每份"堂食"小面和"生食"小面的价格分别是多少元?

(2)该面馆在4月共卖出"堂食"小面4500份,"生食"小面2500份.为回馈广大食客,该面馆从5月1日起每份"堂食"小面的价格保持不变,每份"生食"小面的价格降低 3 4 a % .统计5月的销量和销售额发现:"堂食"小面的销量与4月相同,"生食"小面的销量在4月的基础上增加 5 2 a % ,这两种小面的总销售额在4月的基础上增加 5 11 a % .求 a 的值.

来源:2021年重庆市中考数学试卷(B卷)
  • 题型:未知
  • 难度:未知

我市某中学计划举行以“奋斗百年路,启航新征程”为主题的知识竞赛,并对获奖的同学给予奖励.现要购买甲、乙两种奖品,已知1件甲种奖品和2件乙种奖品共需40元,2件甲种奖品和3件乙种奖品共需70元.

(1)求甲、乙两种奖品的单价;

(2)根据颁奖计划,该中学需甲、乙两种奖品共60件,且甲种奖品的数量不少于乙种奖品数量的 1 2 ,应如何购买才能使总费用最少?并求出最少费用.

来源:2021年四川省资阳市中考数学试卷
  • 题型:未知
  • 难度:未知

《九章算术》是中国古代数学专著,在数学上有其独到的成就,不仅最早提到了分数问题,也首先记录了“盈不足”等问题.如有一道阐述“盈不足”的问题,原文如下:今有共买鸡,人出九,盈十一;人出六,不足十六.问人数、鸡价各几何?译文为:现有若干人合伙出钱买鸡,如果每人出9文钱,就会多11文钱;如果每人出6文钱,又会缺16文钱.问买鸡的人数、鸡的价格各是多少?请解答上述问题.

来源:2018年甘肃省金昌市中考数学试卷
  • 题型:未知
  • 难度:未知

众志成城抗疫情,全国人民在行动.某公司决定安排大、小货车共20辆,运送260吨物资到 A 地和 B 地,支援当地抗击疫情.每辆大货车装15吨物资,每辆小货车装10吨物资,这20辆货车恰好装完这批物资.已知这两种货车的运费如下表:

目的地

车型

A 地(元 / 辆)

B 地(元 / 辆)

大货车

900

1000

小货车

500

700

现安排上述装好物资的20辆货车(每辆大货车装15吨物资,每辆小货车装10吨物资)中的10辆前往 A 地,其余前往 B 地,设前往 A 地的大货车有 x 辆,这20辆货车的总运费为 y 元.

(1)这20辆货车中,大货车、小货车各有多少辆?

(2)求 y x 的函数解析式,并直接写出 x 的取值范围;

(3)若运往 A 地的物资不少于140吨,求总运费 y 的最小值.

来源:2020年云南省中考数学试卷
  • 题型:未知
  • 难度:未知

春平中学要为学校科技活动小组提供实验器材,计划购买 A 型、 B 型两种型号的放大镜.若购买8个 A 型放大镜和5个 B 型放大镜需用220元;若购买4个 A 型放大镜和6个 B 型放大镜需用152元.

(1)求每个 A 型放大镜和每个 B 型放大镜各多少元;

(2)春平中学决定购买 A 型放大镜和 B 型放大镜共75个,总费用不超过1180元,那么最多可以购买多少个 A 型放大镜?

来源:2018年黑龙江省哈尔滨市中考数学试卷
  • 题型:未知
  • 难度:未知

初中数学二元一次方程组的应用解答题