优题课 - 聚名师,上好课(www.youtike.com)
  首页 / 试题库 / 初中数学试题 / 一次函数图象与几何变换 / 解答题
初中数学

如图,一次函数 y 1 = kx + b ( k 0 ) 与反比例函数 y 2 = m x ( m 0 ) 的图象交于

A ( 1 , 2 ) B ( - 2 , a ) ,与 y 轴交于点 M

(1)求一次函数和反比例函数的解析式;

(2)在 y 轴上取一点 N ,当 ΔAMN 的面积为3时,求点 N 的坐标;

(3)将直线 y 1 向下平移2个单位后得到直线 y 3 ,当函数值 y 1 > y 2 > y 3 时,求 x 的取值范围.

来源:2021年四川省遂宁市中考数学试卷
  • 题型:未知
  • 难度:未知

一次函数 y = kx + b ( k 0 ) 的图象与反比例函数 y = m x 的图象相交于 A ( 2 , 3 ) B ( 6 , n ) 两点.

(1)求一次函数的解析式;

(2)将直线 AB 沿 y 轴向下平移8个单位后得到直线 l l 与两坐标轴分别相交于 M N ,与反比例函数的图象相交于点 P Q ,求 PQ MN 的值.

来源:2021年四川省泸州市中考数学试卷
  • 题型:未知
  • 难度:未知

学习了图形的旋转之后,小明知道,将点 P 绕着某定点 A 顺时针旋转一定的角度 α ,能得到一个新的点 P ' ,经过进一步探究,小明发现,当上述点 P 在某函数图象上运动时,点 P ' 也随之运动,并且点 P ' 的运动轨迹能形成一个新的图形.

试根据下列各题中所给的定点 A 的坐标、角度 α 的大小来解决相关问题.

【初步感知】

如图1,设 A ( 1 , 1 ) α = 90 ° ,点 P 是一次函数 y = kx + b 图象上的动点,已知该一次函数的图象经过点 P 1 ( - 1 , 1 )

(1)点 P 1 旋转后,得到的点 P 1 ' 的坐标为   ( 1 , 3 )  

(2)若点 P ' 的运动轨迹经过点 P 2 ' ( 2 , 1 ) ,求原一次函数的表达式.

【深入感悟】

如图2,设 A ( 0 , 0 ) α = 45 ° ,点 P 是反比例函数 y = - 1 x ( x < 0 ) 的图象上的动点,过点 P ' 作二、四象限角平分线的垂线,垂足为 M ,求 ΔOMP ' 的面积.

【灵活运用】

如图3,设 A ( 1 , - 3 ) α = 60 ° ,点 P 是二次函数 y = 1 2 x 2 + 2 3 x + 7 图象上的动点,已知点 B ( 2 , 0 ) C ( 3 , 0 ) ,试探究 ΔBCP ' 的面积是否有最小值?若有,求出该最小值;若没有,请说明理由.

来源:2021年江苏省盐城市中考数学试卷
  • 题型:未知
  • 难度:未知

如图,直线 y = - 3 2 x + 6 x 轴交于点 B ,与 y 轴交于点 A ,点 P 为线段 AB 的中点,点 Q 是线段 OA 上一动点(不与点 O A 重合).

(1)请直接写出点 A 、点 B 、点 P 的坐标;

(2)连接 PQ ,在第一象限内将 ΔOPQ 沿 PQ 翻折得到 ΔEPQ ,点 O 的对应点为点 E .若 OQE = 90 ° ,求线段 AQ 的长;

(3)在(2)的条件下,设抛物线 y = a x 2 - 2 a 2 x + a 3 + a + 1 ( a 0 ) 的顶点为点 C

①若点 C ΔPQE 内部(不包括边),求 a 的取值范围;

②在平面直角坐标系内是否存在点 C ,使 | CQ - CE | 最大?若存在,请直接写出点 C 的坐标;若不存在,请说明理由.

来源:2021年湖北省鄂州市中考数学试卷
  • 题型:未知
  • 难度:未知

如图,一次函数 y = x + 2 的图象与反比例函数 y = k x 的图象相交,其中一个交点的横坐标是1.

(1)求 k 的值;

(2)若将一次函数 y = x + 2 的图象向下平移4个单位长度,平移后所得到的图象与反比例函数 y = k x 的图象相交于 A B 两点,求此时线段 AB 的长.

来源:2021年广西贵港市中考数学试卷
  • 题型:未知
  • 难度:未知

在平面直角坐标系 xOy 中,一次函数 y = kx + b ( k 0 ) 的图象由函数 y = 1 2 x 的图象向下平移1个单位长度得到.

(1)求这个一次函数的解析式;

(2)当 x > - 2 时,对于 x 的每一个值,函数 y = mx ( m 0 ) 的值大于一次函数 y = kx + b 的值,直接写出 m 的取值范围.

来源:2021年北京市中考数学试卷
  • 题型:未知
  • 难度:未知

ΔABC 中, BC 边的长为 x BC 边上的高为 y ΔABC 的面积为2.

(1) y 关于 x 的函数关系式是        x 的取值范围是   

(2)在平面直角坐标系中画出该函数图象;

(3)将直线 y = - x + 3 向上平移 a ( a > 0 ) 个单位长度后与上述函数图象有且只有一个交点,请求出此时 a 的值.

来源:2020年山东省济宁市中考数学试卷
  • 题型:未知
  • 难度:未知

如图,在平面直角坐标系中,直线 y 1 = kx + b ( k 0 ) 与双曲线 y 2 = a x ( a 0 ) 交于 A B 两点,已知点 A ( m , 2 ) ,点 B ( 1 , 4 )

(1)求直线和双曲线的解析式;

(2)把直线 y 1 沿 x 轴负方向平移2个单位后得到直线 y 3 ,直线 y 3 与双曲线 y 2 交于 D E 两点,当 y 2 > y 3 时,求 x 的取值范围.

来源:2018年四川省德阳市中考数学试卷
  • 题型:未知
  • 难度:未知

一次函数 y = kx + b ( k 0 ) 的图象经过点 A ( 2 , 6 ) ,且与反比例函数 y = 12 x 的图象交于点 B ( a , 4 )

(1)求一次函数的解析式;

(2)将直线 AB 向上平移10个单位后得到直线 l : y 1 = k 1 x + b 1 ( k 1 0 ) l 与反比例函数 y 2 = 6 x 的图象相交,求使 y 1 < y 2 成立的 x 的取值范围.

来源:2017年四川省泸州市中考数学试卷
  • 题型:未知
  • 难度:未知

如图,把函数 y = x 的图象上各点的纵坐标变为原来的2倍,横坐标不变,得到函数 y = 2 x 的图象;也可以把函数 y = x 的图象上各点的横坐标变为原来的 1 2 倍,纵坐标不变,得到函数 y = 2 x 的图象.

类似地,我们可以认识其他函数.

(1)把函数 y = 1 x 的图象上各点的纵坐标变为原来的  倍,横坐标不变,得到函数 y = 6 x 的图象;也可以把函数 y = 1 x 的图象上各点的横坐标变为原来的  倍,纵坐标不变,得到函数 y = 6 x 的图象.

(2)已知下列变化:①向下平移2个单位长度;②向右平移1个单位长度;③向右平移 1 2 个单位长度;④纵坐标变为原来的4倍,横坐标不变;⑤横坐标变为原来的 1 2 倍,纵坐标不变;⑥横坐标变为原来的2倍,纵坐标不变.

(Ⅰ)函数 y = x 2 的图象上所有的点经过④ ①,得到函数  的图象;

(Ⅱ)为了得到函数 y = - 1 4 ( x - 1 ) 2 - 2 的图象,可以把函数 y = - x 2 的图象上所有的点  

A .① B .① C .① D .①

(3)函数 y = 1 x 的图象可以经过怎样的变化得到函数 y = - 2 x + 1 2 x + 4 的图象?(写出一种即可)

来源:2016年江苏省南京市中考数学试卷
  • 题型:未知
  • 难度:未知

直线 l 的解析式为 y = 2 x + 2 ,分别交 x 轴、 y 轴于点 A B

(1)写出 A B 两点的坐标,并画出直线 l 的图象;

(2)将直线 l 向上平移4个单位得到 l 1 l 1 x 轴于点 C .作出 l 1 的图象, l 1 的解析式是  

(3)将直线 l 绕点 A 顺时针旋转 90 ° 得到 l 2 l 2 l 1 于点 D .作出 l 2 的图象, tan CAD =   

来源:2017年广西河池市中考数学试卷
  • 题型:未知
  • 难度:未知

如图所示,在平面直角坐标系中,直线 y = x 1 y 轴相交于点 A 与反比例函数 y = k x ( k 0 ) 在第一象限内相交于点 B ( m , 1 )

(1)求反比例函数的解析式;

(2)将直线 y = x 1 向上平行移动后与反比例函数在第一象限内相交于点 C ,且 ΔABC 的面积为4,求平行移动后的直线的解析式.

来源:2018年甘肃省天水市中考数学试卷
  • 题型:未知
  • 难度:未知

如图,在平面直角坐标 xOy 中,正比例函数 y = kx 的图象与反比例函数 y = m x 的图象都经过点 A ( 2 , 2 )

(1)分别求这两个函数的表达式;

(2)将直线 OA 向上平移3个单位长度后与 y 轴交于点 B ,与反比例函数图象在第四象限内的交点为 C ,连接 AB AC ,求点 C 的坐标及 ΔABC 的面积.

来源:2016年四川省成都市中考数学试卷
  • 题型:未知
  • 难度:未知

如图,一次函数的图象与反比例函数的图象相交,其中一个交点的横坐标是2.

(1)求反比例函数的表达式;

(2)将一次函数的图象向下平移2个单位,求平移后的图象与反比例函数图象的交点坐标;

(3)直接写出一个一次函数,使其过点,且与反比例函数的图象没有公共点.

来源:2020年贵州省贵阳市中考数学试卷
  • 题型:未知
  • 难度:未知

如图1,点、点在直线上,反比例函数的图象经过点

(1)求的值;

(2)将线段向右平移个单位长度,得到对应线段,连接

①如图2,当时,过轴于点,交反比例函数图象于点,求的值;

②在线段运动过程中,连接,若是以为腰的等腰三角形,求所有满足条件的的值.

来源:2019年山东省济南市中考数学试卷
  • 题型:未知
  • 难度:未知

初中数学一次函数图象与几何变换解答题