优题课 - 聚名师,上好课(www.youtike.com)
  首页 / 试题库 / 初中数学试题 / 一次函数图象与几何变换 / 解答题
初中数学

如图,在平面直角坐标系中,直线与直线交点的横坐标为2,将直线沿轴向下平移4个单位长度,得到直线,直线轴交于点,与直线交于点,点的纵坐标为.直线轴交于点

(1)求直线的解析式;

(2)求的面积.

来源:2018年重庆市中考数学试卷(b卷)
  • 题型:未知
  • 难度:未知

如图,在平面直角坐标系中,直线过点且与轴交于点,把点向左平移2个单位,再向上平移4个单位,得到点.过点且与平行的直线交轴于点

(1)求直线的解析式;

(2)直线交于点,将直线沿方向平移,平移到经过点的位置结束,求直线在平移过程中与轴交点的横坐标的取值范围.

来源:2018年重庆市中考数学试卷(a卷)
  • 题型:未知
  • 难度:未知

表格中的两组对应值满足一次函数,现画出了它的图象为直线,如图.而某同学为观察对图象的影响,将上面函数中的交换位置后得另一个一次函数,设其图象为直线

0

1

(1)求直线的解析式;

(2)请在图上画出直线(不要求列表计算),并求直线被直线轴所截线段的长;

(3)设直线与直线轴有三个不同的交点,且其中两点关于第三点对称,直接写出的值.

来源:2020年河北省中考数学试卷
  • 题型:未知
  • 难度:未知

如图,过点 A ( 2 , 0 ) 的两条直线 l 1 l 2 分别交 y 轴于点 B C ,其中点 B 在原点上方,点 C 在原点下方,已知 AB = 13

(1)求点 B 的坐标;

(2)若 ΔABC 的面积为4,求直线 l 2 的解析式.

来源:2016年江西省中考数学试卷
  • 题型:未知
  • 难度:未知

在平面直角坐标系中,一次函数的图象由函数的图象平移得到,且经过点

(1)求这个一次函数的解析式;

(2)当时,对于的每一个值,函数的值大于一次函数的值,直接写出的取值范围.

来源:2020年北京市中考数学试卷
  • 题型:未知
  • 难度:未知

如图,把函数 y = x 的图象上各点的纵坐标变为原来的2倍,横坐标不变,得到函数 y = 2 x 的图象;也可以把函数 y = x 的图象上各点的横坐标变为原来的 1 2 倍,纵坐标不变,得到函数 y = 2 x 的图象.

类似地,我们可以认识其他函数.

(1)把函数 y = 1 x 的图象上各点的纵坐标变为原来的  倍,横坐标不变,得到函数 y = 6 x 的图象;也可以把函数 y = 1 x 的图象上各点的横坐标变为原来的  倍,纵坐标不变,得到函数 y = 6 x 的图象.

(2)已知下列变化:①向下平移2个单位长度;②向右平移1个单位长度;③向右平移 1 2 个单位长度;④纵坐标变为原来的4倍,横坐标不变;⑤横坐标变为原来的 1 2 倍,纵坐标不变;⑥横坐标变为原来的2倍,纵坐标不变.

(Ⅰ)函数 y = x 2 的图象上所有的点经过④ ①,得到函数  的图象;

(Ⅱ)为了得到函数 y = - 1 4 ( x - 1 ) 2 - 2 的图象,可以把函数 y = - x 2 的图象上所有的点  

A .① B .① C .① D .①

(3)函数 y = 1 x 的图象可以经过怎样的变化得到函数 y = - 2 x + 1 2 x + 4 的图象?(写出一种即可)

来源:2016年江苏省南京市中考数学试卷
  • 题型:未知
  • 难度:未知

学习了图形的旋转之后,小明知道,将点 P 绕着某定点 A 顺时针旋转一定的角度 α ,能得到一个新的点 P ' ,经过进一步探究,小明发现,当上述点 P 在某函数图象上运动时,点 P ' 也随之运动,并且点 P ' 的运动轨迹能形成一个新的图形.

试根据下列各题中所给的定点 A 的坐标、角度 α 的大小来解决相关问题.

【初步感知】

如图1,设 A ( 1 , 1 ) α = 90 ° ,点 P 是一次函数 y = kx + b 图象上的动点,已知该一次函数的图象经过点 P 1 ( - 1 , 1 )

(1)点 P 1 旋转后,得到的点 P 1 ' 的坐标为   ( 1 , 3 )  

(2)若点 P ' 的运动轨迹经过点 P 2 ' ( 2 , 1 ) ,求原一次函数的表达式.

【深入感悟】

如图2,设 A ( 0 , 0 ) α = 45 ° ,点 P 是反比例函数 y = - 1 x ( x < 0 ) 的图象上的动点,过点 P ' 作二、四象限角平分线的垂线,垂足为 M ,求 ΔOMP ' 的面积.

【灵活运用】

如图3,设 A ( 1 , - 3 ) α = 60 ° ,点 P 是二次函数 y = 1 2 x 2 + 2 3 x + 7 图象上的动点,已知点 B ( 2 , 0 ) C ( 3 , 0 ) ,试探究 ΔBCP ' 的面积是否有最小值?若有,求出该最小值;若没有,请说明理由.

来源:2021年江苏省盐城市中考数学试卷
  • 题型:未知
  • 难度:未知

如图,直线 y = - 3 2 x + 6 x 轴交于点 B ,与 y 轴交于点 A ,点 P 为线段 AB 的中点,点 Q 是线段 OA 上一动点(不与点 O A 重合).

(1)请直接写出点 A 、点 B 、点 P 的坐标;

(2)连接 PQ ,在第一象限内将 ΔOPQ 沿 PQ 翻折得到 ΔEPQ ,点 O 的对应点为点 E .若 OQE = 90 ° ,求线段 AQ 的长;

(3)在(2)的条件下,设抛物线 y = a x 2 - 2 a 2 x + a 3 + a + 1 ( a 0 ) 的顶点为点 C

①若点 C ΔPQE 内部(不包括边),求 a 的取值范围;

②在平面直角坐标系内是否存在点 C ,使 | CQ - CE | 最大?若存在,请直接写出点 C 的坐标;若不存在,请说明理由.

来源:2021年湖北省鄂州市中考数学试卷
  • 题型:未知
  • 难度:未知

初中数学一次函数图象与几何变换解答题