如图,在平面直角坐标系中,直线 与反比例函数 的图象交于点 ,将直线 沿 轴向上平移 个单位长度,交 轴于点 ,交反比例函数图象于点 .若 ,则 的值为
A.1B.2C.3D.4
在平面直角坐标系中,垂直于轴的直线分别与函数和的图象相交于,两点.若平移直线,可以使,都在轴的下方,则实数的取值范围是 .
在平面直角坐标系中,一次函数的图象由函数的图象平移得到,且经过点.
(1)求这个一次函数的解析式;
(2)当时,对于的每一个值,函数的值大于一次函数的值,直接写出的取值范围.
如图,一次函数 的图象与 轴、 轴分别交于点 , ,把直线 绕点 顺时针旋转 交 轴于点 ,则线段 长为
A. |
|
B. |
|
C. |
|
D. |
|
如图,直线 与双曲线 相交于 , 两点,与 轴相交于 点, 的面积是 .若将直线 向下平移1个单位,则所得直线与双曲线 的交点有
A.0个B.1个
C.2个D.0个,或1个,或2个
函数图象在探索函数的性质中有非常重要的作用,下面我们就一类特殊的函数展开探索.画函数的图象,经历分析解析式、列表、描点、连线过程得到函数图象如图所示;经历同样的过程画函数和的图象如图所示.
0 |
1 |
2 |
3 |
||||||
0 |
(1)观察发现:三个函数的图象都是由两条射线组成的轴对称图形;三个函数解析式中绝对值前面的系数相同,则图象的开口方向和形状完全相同,只有最高点和对称轴发生了变化.写出点,的坐标和函数的对称轴.
(2)探索思考:平移函数的图象可以得到函数和的图象,分别写出平移的方向和距离.
(3)拓展应用:在所给的平面直角坐标系内画出函数的图象.若点,和,在该函数图象上,且,比较,的大小.
如图,一次函数 的图象与反比例函数 的图象相交,其中一个交点的横坐标是1.
(1)求 的值;
(2)若将一次函数 的图象向下平移4个单位长度,平移后所得到的图象与反比例函数 的图象相交于 , 两点,求此时线段 的长.
试题篮
()