为了“创建文明城市,建设美丽家园”,我市某社区将辖区内的一块面积为 的空地进行绿化,一部分种草,剩余部分栽花,设种草部分的面积为 ,种草所需费用 (元)与 的函数关系式为 ,其图象如图所示:栽花所需费用 (元 与 的函数关系式为 .
(1)请直接写出 、 和 的值;
(2)设这块 空地的绿化总费用为 (元),请利用 与 的函数关系式,求出绿化总费用 的最大值;
(3)若种草部分的面积不少于 ,栽花部分的面积不少于 ,请求出绿化总费用 的最小值.
某超市销售一种牛奶,进价为每箱24元,规定售价不低于进价.现在的售价为每箱36元,每月可销售60箱.市场调查发现:若这种牛奶的售价每降价1元,则每月的销量将增加10箱,设每箱牛奶降价 元 为正整数),每月的销量为 箱.
(1)写出 与 之间的函数关系式和自变量 的取值范围;
(2)超市如何定价,才能使每月销售牛奶的利润最大?最大利润是多少元?
为响应荆州市“创建全国文明城市”号召,某单位不断美化环境,拟在一块矩形空地上修建绿色植物园,其中一边靠墙,可利用的墙长不超过 ,另外三边由 长的栅栏围成.设矩形 空地中,垂直于墙的边 ,面积为 (如图).
(1)求 与 之间的函数关系式,并写出自变量 的取值范围;
(2)若矩形空地的面积为 ,求 的值;
(3)若该单位用8600元购买了甲、乙、丙三种绿色植物共400棵(每种植物的单价和每棵栽种的合理用地面积如下表).问丙种植物最多可以购买多少棵?此时,这批植物可以全部栽种到这块空地上吗?请说明理由.
甲 |
乙 |
丙 |
|
单价(元 棵) |
14 |
16 |
28 |
合理用地( 棵) |
0.4 |
1 |
0.4 |
新欣商场经营某种新型电子产品,购进时的价格为20元 件.根据市场预测,在一段时间内,销售价格为40元 件时,销售量为200件,销售单价每降低1元,就可多售出20件.
(1)写出销售量 (件)与销售单价 (元)之间的函数关系式;
(2)写出销售该产品所获利润 (元)与销售单价 (元)之间的函数关系式,并求出商场获得的最大利润;
(3)若商场想获得不低于4000元的利润,同时要完成不少于320件的该产品销售任务,该商场应该如何确定销售价格.
我市雷雷服饰有限公司生产了一款夏季服装,通过实体商店和网上商店两种途径进行销售,销售一段时间后,该公司对这种商品的销售情况,进行了为期30天的跟踪调查,其中实体商店的日销售量 (百件)与时间 为整数,单位:天)的部分对应值如表所示,网上商店的日销售量 (百件)与时间 为整数,单位:天)的部分对应值如图所示.
时间 (天 |
0 |
5 |
10 |
15 |
20 |
25 |
30 |
日销售量 (百件) |
0 |
25 |
40 |
45 |
40 |
25 |
0 |
(1)请你在一次函数、二次函数和反比例函数中,选择合适的函数能反映 与 的变化规律,并求出 与 的函数关系式及自变量 的取值范围;
(2)求 与 的函数关系式,并写出自变量 的取值范围;
(3)在跟踪调查的30天中,设实体商店和网上商店的日销售总量为 (百件),求 与 的函数关系式;当 为何值时,日销售总量 达到最大,并求出此时的最大值.
为早日实现脱贫奔小康的宏伟目标,我市结合本地丰富的山水资源,大力发展旅游业,王家庄在当地政府的支持下,办起了民宿合作社,专门接待游客,合作社共有80间客房.根据合作社提供的房间单价 (元)和游客居住房间数 (间)的信息,乐乐绘制出 与 的函数图象如图所示:
(1)求 与 之间的函数关系式;
(2)合作社规定每个房间价格不低于60元且不超过150元,对于游客所居住的每个房间,合作社每天需支出20元的各种费用,房价定为多少时,合作社每天获利最大?最大利润是多少?
某水果店在两周内,将标价为10元 斤的某种水果,经过两次降价后的价格为8.1元 斤,并且两次降价的百分率相同.
(1)求该种水果每次降价的百分率;
(2)从第一次降价的第1天算起,第 天( 为整数)的售价、销量及储存和损耗费用的相关信息如表所示.已知该种水果的进价为4.1元 斤,设销售该水果第 (天)的利润为 (元),求 与 之间的函数关系式,并求出第几天时销售利润最大?
时间 (天) |
|
|
|
售价(元 斤) |
第1次降价后的价格 |
第2次降价后的价格 |
|
销量(斤) |
|
|
|
储存和损耗费用(元) |
|
|
(3)在(2)的条件下,若要使第15天的利润比(2)中最大利润最多少127.5元,则第15天在第14天的价格基础上最多可降多少元?
绿色生态农场生产并销售某种有机产品,假设生产出的产品能全部售出.如图,线段 、折线 分别表示该有机产品每千克的销售价 (元)、生产成本 (元)与产量 之间的函数关系.
(1)求该产品销售价 (元)与产量 之间的函数关系式;
(2)直接写出生产成本 (元)与产量 之间的函数关系式;
(3)当产量为多少时,这种产品获得的利润最大?最大利润为多少?
荆州市某水产养殖户进行小龙虾养殖.已知每千克小龙虾养殖成本为6元,在整个销售旺季的80天里,销售单价 (元 千克)与时间第 (天 之间的函数关系为:
,日销售量 (千克)与时间第 (天 之间的函数关系如图所示:
(1)求日销售量 与时间 的函数关系式?
(2)哪一天的日销售利润最大?最大利润是多少?
(3)该养殖户有多少天日销售利润不低于2400元?
(4)在实际销售的前40天中,该养殖户决定每销售1千克小龙虾,就捐赠 元给村里的特困户.在这前40天中,每天扣除捐赠后的日销售利润随时间 的增大而增大,求 的取值范围.
随着龙虾节的火热举办,某龙虾养殖大户为了发挥技术优势,一次性收购了 小龙虾,计划养殖一段时间后再出售.已知每天养殖龙虾的成本相同,放养10天的总成本为166000,放养30天的总成本为178000元.设这批小龙虾放养 天后的质量为 ,销售单价为 元 ,根据往年的行情预测, 与 的函数关系为 , 与 的函数关系如图所示.
(1)设每天的养殖成本为 元,收购成本为 元,求 与 的值;
(2)求 与 的函数关系式;
(3)如果将这批小龙虾放养 天后一次性出售所得利润为 元.问该龙虾养殖大户将这批小龙虾放养多少天后一次性出售所得利润最大?最大利润是多少?
(总成本 放养总费用 收购成本;利润 销售总额 总成本)
襄阳市精准扶贫工作已进入攻坚阶段.贫困户张大爷在某单位的帮扶下,把一片坡地改造后种植了优质水果蓝莓,今年正式上市销售.在销售的30天中,第一天卖出20千克,为了扩大销量,采取了降价措施,以后每天比前一天多卖出4千克.第 天的售价为 元 千克, 关于 的函数解析式为:
,且第12天的售价为32元 千克,第26天的售价为25元 千克.已知种植销售蓝莓的成本是18元 千克,每天的利润是 元(利润 销售收入 成本).
(1) , ;
(2)求销售蓝莓第几天时,当天的利润最大?最大利润是多少?
(3)在销售蓝莓的30天中,当天利润不低于870元的共有多少天?
小明同学在一次社会实践活动中,通过对某种蔬菜在1月份至7月份的市场行情进行统计分析后得出如下规律:
①该蔬菜的销售单价 (单位:元 千克)与时间 (单位:月份)满足关系: ;
②该蔬菜的平均成本 (单位:元 千克)与时间 (单位:月份)满足二次函数关系 .
已知4月份的平均成本为2元 千克,6月份的平均成本为1元 千克.
(1)求该二次函数的解析式;
(2)请运用小明统计的结论,求出该蔬菜在第几月份的平均利润 (单位:元 千克)最大?最大平均利润是多少?(注:平均利润 销售单价 平均成本)
为迎接“世界华人炎帝故里寻根节”,某工厂接到一批纪念品生产订单,按要求在15天内完成,约定这批纪念品的出厂价为每件20元,设第 天( ,且 为整数)每件产品的成本是 元, 与 之间符合一次函数关系,部分数据如表:
天数 |
1 |
3 |
6 |
10 |
每件成本 (元) |
7.5 |
8.5 |
10 |
12 |
任务完成后,统计发现工人李师傅第 天生产的产品件数 (件)与 (天)满足如下关系:
设李师傅第 天创造的产品利润为 元.
(1)直接写出 与 , 与 之间的函数关系式,并注明自变量 的取值范围:
(2)求李师傅第几天创造的利润最大?最大利润是多少元?
(3)任务完成后,统计发现平均每个工人每天创造的利润为299元.工厂制定如下奖励制度:如果一个工人某天创造的利润超过该平均值,则该工人当天可获得20元奖金.请计算李师傅共可获得多少元奖金?
我市某乡镇在“精准扶贫”活动中销售一农产品,经分析发现月销售量 (万件)与月份 (月)的关系为: ,每件产品的利润 (元)与月份 (月)的关系如下表:
|
1 |
2 |
3 |
4 |
5 |
6 |
7 |
8 |
9 |
10 |
11 |
12 |
|
19 |
18 |
17 |
16 |
15 |
14 |
13 |
12 |
11 |
10 |
10 |
10 |
(1)请你根据表格求出每件产品利润 (元)与月份 (月)的关系式;
(2)若月利润 (万元) 当月销售量 (万件) 当月每件产品的利润 (元),求月利润 (万元)与月份 (月)的关系式;
(3)当 为何值时,月利润 有最大值,最大值为多少?
某电子科技有限公司用160万元,作为新产品的研发费用,成功研制出了一种市场急需的电子产品,已于当年投入生产并进行销售.已知生产这种电子产品的成本为4元 件,在销售过程中发现:每年的年销售量 (万件)与销售价格 (元 件)的关系如图所示,其中 为反比例函数图象的一部分, 为一次函数图象的一部分.设公司销售这种电子产品的年利润为 (万元).(注:若上一年盈利,则盈利不计入下一年的年利润;若上一年亏损,则亏损计作下一年的成本.
(1)请求出 (万件)与 (元 件)之间的函数关系式;
(2)求出第一年这种电子产品的年利润 (万元)与 (元 件)之间的函数关系式,并求出第一年年利润的最大值.
(3)假设公司的这种电子产品第一年恰好按年利润 (万元)取得最大值时进行销售,现根据第一年的盈亏情况,决定第二年将这种电子产品每件的销售价格 (元 定在8元以上 ,当第二年的年利润不低于103万元时,请结合年利润 (万元)与销售价格 (元 件)的函数示意图,求销售价格 (元 件)的取值范围.
试题篮
()