优题课 - 聚名师,上好课(www.youtike.com)
  首页 / 试题库 / 初中数学试题 / 二次函数的应用
初中数学

某商店购进一批成本为每件30元的商品,经调查发现,该商品每天的销售量(件与销售单价(元之间满足一次函数关系,其图象如图所示.

(1)求该商品每天的销售量与销售单价之间的函数关系式;

(2)若商店按单价不低于成本价,且不高于50元销售,则销售单价定为多少,才能使销售该商品每天获得的利润(元最大?最大利润是多少?

(3)若商店要使销售该商品每天获得的利润不低于800元,则每天的销售量最少应为多少件?

来源:2019年山东省青岛市中考数学试卷
  • 题型:未知
  • 难度:未知

某服装厂生产 A 品种服装,每件成本为71元,零售商到此服装厂一次性批发 A 品牌服装 x 件时,批发单价为 y 元, y x 之间满足如图所示的函数关系,其中批发件数 x 为10的正整数倍.

(1)当 100 x 300 时, y x 的函数关系式为           

(2)某零售商到此服装厂一次性批发 A 品牌服装200件,需要支付多少元?

(3)零售商到此服装厂一次性批发 A 品牌服装 x ( 100 x 400 ) 件,服装厂的利润为 w 元,问: x 为何值时, w 最大?最大值是多少?

来源:2020年辽宁省盘锦市中考数学试卷
  • 题型:未知
  • 难度:未知

某公司投入研发费用80万元 ( 80 万元只计入第一年成本),成功研发出一种产品.公司按订单生产(产量 = 销售量),第一年该产品正式投产后,生产成本为6元 / 件.此产品年销售量 y (万件)与售价 x (元 / 件)之间满足函数关系式 y = x + 26

(1)求这种产品第一年的利润 W 1 (万元)与售价 x (元 / 件)满足的函数关系式;

(2)若该产品第一年的利润为20万元,那么该产品第一年的售价是多少?

(3)在(2)的条件下,第二年,该公司将第一年的利润20万元 ( 20 万元只计入第二年成本)再次投入研发,使产品的生产成本降为5元 / 件.为保持市场占有率,公司规定第二年产品售价不超过第一年的售价,另外受产能限制,销售量无法超过12万件.请计算该公司第二年的利润 W 2 至少为多少万元.

来源:2018年山东省青岛市中考数学试卷
  • 题型:未知
  • 难度:未知

某水果超市以每千克20元的价格购进一批樱桃,规定每千克樱桃售价不低于进价又不高于40元,经市场调查发现,樱桃的日销售量 y (千克)与每千克售价 x (元 ) 满足一次函数关系,其部分对应数据如下表所示:

每千克售价     x (元     )

25

30

35

日销售量     y (千克)

110

100

90

(1)求 y x 之间的函数关系式;

(2)该超市要想获得1000的日销售利润,每千克樱桃的售价应定为多少元?

(3)当每千克樱桃的售价定为多少元时,日销售利润最大?最大利润是多少?

来源:2020年辽宁省锦州市中考数学试卷
  • 题型:未知
  • 难度:未知

湖州素有鱼米之乡之称,某水产养殖大户为了更好地发挥技术优势,一次性收购了 20000 kg 淡水鱼,计划养殖一段时间后再出售.已知每天放养的费用相同,放养10天的总成本为30.4万元;放养20天的总成本为30.8万元(总成本 = 放养总费用 + 收购成本).

(1)设每天的放养费用是 a 万元,收购成本为 b 万元,求 a b 的值;

(2)设这批淡水鱼放养 t 天后的质量为 m ( kg ) ,销售单价为 y / kg .根据以往经验可知: m t 的函数关系为 m = 20000 ( 0 t 50 ) 100 t + 15000 ( 50 < t 100 ) y t 的函数关系如图所示.

①分别求出当 0 t 50 50 < t 100 时, y t 的函数关系式;

②设将这批淡水鱼放养 t 天后一次性出售所得利润为 W 元,求当 t 为何值时, W 最大?并求出最大值.(利润 = 销售总额 总成本)

来源:2017年浙江省湖州市中考数学试卷
  • 题型:未知
  • 难度:未知

如图,在 Rt Δ ABC 中, ACB = 90 ° AC = BC = 2 2 CD AB 于点 D .点 P 从点 A 出发,沿 A D C 的路径运动,运动到点 C 停止,过点 P PE AC 于点 E ,作 PF BC 于点 F .设点 P 运动的路程为 x ,四边形 CEPF 的面积为 y ,则能反映 y x 之间函数关系的图象是 (    )

A.

B.

C.

D.

来源:2020年辽宁省抚顺市中考数学试卷
  • 题型:未知
  • 难度:未知

某农作物的生长率与温度有如下关系:如图,当时可近似用函数刻画;当时可近似用函数刻画.

(1)求的值.

(2)按照经验,该作物提前上市的天数(天与生长率之间满足已学过的函数关系,部分数据如下:

生长率

0.2

0.25

0.3

0.35

提前上市的天数(天

0

5

10

15

求:①关于的函数表达式;

②用含的代数式表示

③天气寒冷,大棚加温可改变农作物生长速度.大棚恒温时每天的成本为100元,计划该作物30天后上市,现根据市场调查:每提前一天上市售出(一次售完),销售额可增加600元.因此决定给大棚继续加温,但加温导致成本增加,估测加温到时的成本为200元天,但若欲加温到,由于要采用特殊方法,成本增加到400元天.问加温到多少度时增加的利润最大?并说明理由.(注农作物上市售出后大棚暂停使用)

来源:2019年浙江省舟山市中考数学试卷
  • 题型:未知
  • 难度:未知

某商店销售一种商品,每件的进价为50元,经市场调研发现,当该商品每件的售价为60元时,每天可销售200件;当售价高于进价时,每件的售价每增加1元,每天的销售数量将减少10件.

(1)当每件商品的售价为64元时,求该商品每天的销售数量;

(2)当每件商品的售价为多少时,销售该商品每天获得的利润最大?并求出最大利润.

来源:2019年四川省阿坝州中考数学试卷
  • 题型:未知
  • 难度:未知

黔东南州某超市购进甲、乙两种商品,已知购进3件甲商品和2件乙商品,需60元;购进2件甲商品和3件乙商品,需65元.

(1)甲、乙两种商品的进货单价分别是多少?

(2)设甲商品的销售单价为(单位:元件),在销售过程中发现:当时,甲商品的日销售量(单位:件)与销售单价之间存在一次函数关系,之间的部分数值对应关系如表:

销售单价(元件)

11

19

日销售量(件

18

2

请写出当时,之间的函数关系式.

(3)在(2)的条件下,设甲商品的日销售利润为元,当甲商品的销售单价(元件)定为多少时,日销售利润最大?最大利润是多少?

来源:2020年贵州省黔东南州中考数学试卷
  • 题型:未知
  • 难度:未知

汽车刹车后行驶的距离(单位:米)关于行驶时间(单位:秒)的函数关系式是.则汽车从刹车到停止所用时间为  秒.

来源:2020年湖北省襄阳市中考数学试卷
  • 题型:未知
  • 难度:未知

如图,在 ΔABC 中, C = 90 ° AC = 3 BC = 4 P BC 边上的动点(与 B C 不重合), PD / / AB ,交 AC 于点 D ,连接 AP ,设 CP = x ΔADP 的面积为 S

(1)用含 x 的代数式表示 AD 的长;

(2)求 S x 的函数表达式,并求当 S x 增大而减小时 x 的取值范围.

来源:2020年江苏省泰州市中考数学试卷
  • 题型:未知
  • 难度:未知

如图,在平面直角坐标系中,已知 A(﹣3,﹣2), B(0,﹣2), C(﹣3,0), M是线段 AB上的一个动点,连接 CM,过点 MMNMCy轴于点 N,若点 MN在直线 ykx+ b上,则 b的最大值是(  )

A.

7 8

B.

3 4

C.

﹣1

D.

0

来源:2019年内蒙古包头市中考数学试卷
  • 题型:未知
  • 难度:未知

交通工程学理论把在单向道路上行驶的汽车看成连续的流体,并用流量、速度、密度三个概念描述车流的基本特征.其中流量 q (辆 / 小时)指单位时间内通过道路指定断面的车辆数;速度 v (千米 / 小时)指通过道路指定断面的车辆速度;密度 k (辆 / 千米)指通过道路指定断面单位长度内的车辆数.

为配合大数据治堵行动,测得某路段流量 q 与速度 v 之间关系的部分数据如下表:

速度 v (千米 / 小时)

5

10

20

32

40

48

流量 q (辆 / 小时)

550

1000

1600

1792

1600

1152

(1)根据上表信息,下列三个函数关系式中,刻画 q v 关系最准确的是  (只填上正确答案的序号)

q = 90 v + 100 ;② q = 32000 v ;③ q = 2 v 2 + 120 v

(2)请利用(1)中选取的函数关系式分析,当该路段的车流速度为多少时,流量达到最大?最大流量是多少?

(3)已知 q v k 满足 q = vk ,请结合(1)中选取的函数关系式继续解决下列问题.

①市交通运行监控平台显示,当 12 v < 18 时道路出现轻度拥堵.试分析当车流密度 k 在什么范围时,该路段将出现轻度拥堵;

②在理想状态下,假设前后两车车头之间的距离 d (米 ) 均相等,求流量 q 最大时 d 的值.

来源:2017年浙江省台州市中考数学试卷
  • 题型:未知
  • 难度:未知

如图,在边长为 6 cm 的正方形 ABCD 中,点 E F G H 分别从点 A B C D 同时出发,均以 1 cm / s 的速度向点 B C D A 匀速运动,当点 E 到达点 B 时,四个点同时停止运动,在运动过程中,当运动时间为        s 时,四边形 EFGH 的面积最小,其最小值是        c m 2

来源:2017年新疆生产建设兵团中考数学试卷
  • 题型:未知
  • 难度:未知

某厂商投产一种新型科技产品,每件制造成本为18元,试销过程中发现,每月销售量 y(万件)与销售单价 x(元)之间的关系可以近似地看作一次函数 y=﹣2 x+100

(1)写出每月的利润 L(万元)与销售单价 x(元)之间的函数关系式;

(2)当销售单价为多少元时,厂商每月能获得312万元的利润?当销售单价为多少元时,厂商每月能获得最大利润?最大利润是多少?

(3)根据相关部门规定,这种科技产品的销售单价不能高于32元,如果厂商要获得每月不低于312万元的利润,那么制造出这种产品每月的最低制造成本需要多少万元?

来源:2018年内蒙古兴安盟中考数学试卷(a卷)
  • 题型:未知
  • 难度:未知

初中数学二次函数的应用试题