在数学拓展课上,小明发现:若一条直线经过平行四边形对角线的交点,则这条直线平分该平行四边形的面积.如图是由5个边长为1的小正方形拼成的图形, 是其中4个小正方形的公共顶点,小强在小明的启发下,将该图形沿着过点 的某条直线剪一刀,把它剪成了面积相等的两部分,则剪痕的长度是
A. |
|
B. |
|
C. |
|
D. |
|
如图,把某矩形纸片沿,折叠(点,在边上,点,在边上),使点和点落在边上同一点处,点的对称点为点,点的对称点为点,若,△的面积为4,△的面积为1,则矩形的面积等于 .
如图,在平行四边形中,点在边上,连接,,垂足为,交于点,,垂足为,,垂足为,交于点,点是上一点,连接.
(1)若,,,求的面积.
(2)若,,求证:.
如图,在 中, 是 边上的中点,连结 ,把 沿 翻折,得到 , 与 交于点 ,连结 ,若 , ,则点 到 的距离为
A. |
|
B. |
|
C. |
|
D. |
|
如图,在平行四边形中,点是对角线的中点,点是上一点,且,连接并延长交于点.过点作的垂线,垂足为,交于点.
(1)若,,求的面积;
(2)若,求证:.
如图,中,,,点是上一点,连接.
(1)如图1,若,,求的长;
(2)如图2,点是线段延长线上一点,过点作于点,连接、,当时,求证:.
如图,正方形中,,点是对角线上一点,连接,过点作,交于点,连接,交于点,将沿翻折,得到,连接,交于点,若点是边的中点,则的周长是 .
在中,,,垂足为,点是延长线上一点,连接.
(1)如图1,若,,求的长;
(2)如图2,点是线段上一点,,点是外一点,,连接并延长交于点,且点是线段的中点,求证:.
已知 是等腰直角三角形, , , , ,连接 ,点 是 的中点.
(1)如图1,若点 在 边上,连接 ,当 时,求 的长;
(2)如图2,若点 在 的内部,连接 ,点 是 中点,连接 , ,求证: ;
(3)如图3,将图2中的 绕点 逆时针旋转,使 ,连接 ,点 是 中点,连接 ,探索 的值并直接写出结果.
如图,在正方形中,,点在边上,,连接,将沿翻折,点落在点处,点是对角线的中点,连接并延长交于点,连接,,则的周长是 .
试题篮
()