如图,将一张等边三角形纸片沿中位线剪成4个小三角形,称为第一次操作;然后,将其中的一个三角形按同样方式再剪成4个小三角形,共得到7个小三角形,称为第二次操作;再将其中一个三角形按同样方式再剪成4个小三角形,共得到10个小三角形,称为第三次操作; 根据以上操作,若要得到100个小三角形,则需要操作的次数是
A.25B.33C.34D.50
如图,等腰三角形 ABC中, BD, CE分别是两腰上的中线.
(1)求证: BD= CE;
(2)设 BD与 CE相交于点 O,点 M, N分别为线段 BO和 CO的中点,当△ ABC的重心到顶点 A的距离与底边长相等时,判断四边形 DEMN的形状,无需说明理由.
已知四边形ABCD是平行四边形,对角线AC、BD交于点O,E是BC的中点,以下说法错误的是( )
A. B. C. D.
尤秀同学遇到了这样一个问题:如图1所示,已知AF,BE是△ABC的中线,且 ,垂足为P,设 .
求证:
该同学仔细分析后,得到如下解题思路:
先连接EF,利用EF为△ABC的中位线得到△EPF∽△BPA,故 ,设 ,用m,n把PA,PB分别表示出来,再在Rt△APE,Rt△BPF中利用勾股定理计算,消去m,n即可得证
(1)请你根据以上解题思路帮尤秀同学写出证明过程.
(2)利用题中的结论,解答下列问题:
在边长为3的菱形ABCD中,O为对角线AC,BD的交点,E,F分别为线段AO,DO的中点,连接BE,CF并延长交于点M,BM,CM分别交AD于点G,H,如图2所示,求 的值.
如图,在 中, , 是 的中点,过点 作 的平行线交 于点 ,作 的垂线交 于点 ,若 ,且 的面积为1,则 的长为
A. B.5C. D.10
已知:△ ABC内接于⊙ O, D是 上一点, ,垂足为 H.
(1)如图1,当圆心 O在 AB边上时,求证: ;
(2)如图2,当圆心 O在△ ABC外部时,连接 AD、 CD, AD与 BC交于点 P,求证: ;
(3)在(2)的条件下,如图3,连接 BD, E为⊙ O上一点,连接 DE交 BC于点 Q、交 AB于点 N,连接 OE, BF为⊙ O的弦, 于点 R交 DE于点 G,若 , , , ,求 BF的长.
在△ABC中,P为边AB上一点.
(1)如图1,若 ,求证: ;
(2)若M为CP的中点, .
①如图2,若 , ,求BP的长;
②如图3,若 , ,直接写出BP的长.
在△ ABC中,点 D、 E分别为边 AB、 AC的中点,则△ ADE与△ ABC的面积之比为( )
A. |
|
B. |
|
C. |
|
D. |
|
如图,在 中, , , ,点 , , 分别是 , , 的中点,连结 , ,则四边形 的周长为
A. |
6 |
B. |
9 |
C. |
12 |
D. |
15 |
如图,以等边三角形 的 边为直径画圆,交 于点 , 于点 ,连接 ,且 .
(1)求证: 是 的切线;
(2)求线段 的长度.
试题篮
()