优题课 - 聚名师,上好课(www.youtike.com)
  首页 / 试题库 / 初中数学试题 / 矩形的性质 / 解答题
初中数学

如图,在矩形 ABCD 中,对角线 AC 的垂直平分线分别与边 AB 和边 CD 的延长线交于点 M N ,与边 AD 交于点 E ,垂足为点 O

(1)求证: ΔAOM ΔCON

(2)若 AB = 3 AD = 6 ,请直接写出 AE 的长为   

来源:2020年辽宁省沈阳市中考数学试卷
  • 题型:未知
  • 难度:未知

如图,平面直角坐标系中,已知点 B 的坐标为 ( 6 , 4 )

(1)请用直尺(不带刻度)和圆规作一条直线 AC ,它与 x 轴和 y 轴的正半轴分别交于点 A 和点 C ,且使 ABC = 90 ° ΔABC ΔAOC 的面积相等.(作图不必写作法,但要保留作图痕迹. )

(2)问:(1)中这样的直线 AC 是否唯一?若唯一,请说明理由;若不唯一,请在图中画出所有这样的直线 AC ,并写出与之对应的函数表达式.

来源:2018年江苏省无锡市中考数学试卷
  • 题型:未知
  • 难度:未知

【教材呈现】如图是华师版八年级下册数学教材第121页的部分内容.

1.把一张矩形纸片如图那样折一下,就可以裁出正方形纸片,为什么?

【问题解决】如图①,已知矩形纸片 ABCD ( AB > AD ) ,将矩形纸片沿过点 D 的直线折叠,使点 A 落在边 DC 上,点 A 的对应点为 A ' ,折痕为 DE ,点 E AB 上.求证:四边形 AEA ' D 是正方形.

【规律探索】由【问题解决】可知,图①中的△ A ' DE 为等腰三角形.现将图①中的点 A ' 沿 DC 向右平移至点 Q 处(点 Q 在点 C 的左侧),如图②,折痕为 PF ,点 F DC 上,点 P AB 上,那么 ΔPQF 还是等腰三角形吗?请说明理由.

[结论应用]在图②中,当 QC = QP 时,将矩形纸片继续折叠如图③,使点 C 与点 P 重合,折痕为 QG ,点 G AB 上.要使四边形 PGQF 为菱形,则 AD AB =    

来源:2020年吉林省长春市中考数学试卷
  • 题型:未知
  • 难度:未知

综合与实践

背景阅读 早在三千多年前,我国周朝数学家商高就提出:将一根直尺折成一个直角,如果勾等于三,股等于四,那么弦就等于五,即“勾三、股四、弦五”.它被记载于我国古代著名数学著作《周髀算经》中,为了方便,在本题中,我们把三边的比为的三角形称为,4,型三角形,例如:三边长分别为9,12,15或的三角形就是,4,型三角形,用矩形纸片按下面的操作方法可以折出这种类型的三角形.

实践操作 如图1,在矩形纸片中,

第一步:如图2,将图1中的矩形纸片沿过点的直线折叠,使点落在上的点处,折痕为,再沿折叠,然后把纸片展平.

第二步:如图3,将图2中的矩形纸片再次折叠,使点与点重合,折痕为,然后展平,隐去

第三步:如图4,将图3中的矩形纸片沿折叠,得到△,再沿折叠,折痕为与折痕交于点,然后展平.

问题解决

(1)请在图2中证明四边形是正方形.

(2)请在图4中判断的数量关系,并加以证明;

(3)请在图4中证明,4,型三角形;

探索发现

(4)在不添加字母的情况下,图4中还有哪些三角形是,4,型三角形?请找出并直接写出它们的名称.

来源:2017年山西省中考数学试卷
  • 题型:未知
  • 难度:未知

如图,在矩形 ABCD 中, E BC 的中点, DF AE ,垂足为 F

(1)求证: ΔABE ΔDFA

(2)若 AB = 6 BC = 4 ,求 DF 的长.

来源:2020年江苏省苏州市中考数学试卷
  • 题型:未知
  • 难度:未知

如图,将矩形纸片 ABCD 沿直线 MN 折叠,顶点 B 恰好与 CD 边上的动点 P 重合(点 P 不与点 C D 重合),折痕为 MN ,点 M N 分别在边 AD BC 上,连接 MB MP BP BP MN 相交于点 F

(1)求证: ΔBFN ΔBCP

(2)①在图2中,作出经过 M D P 三点的 O (要求保留作图痕迹,不写做法);

②设 AB = 4 ,随着点 P CD 上的运动,若①中的 O 恰好与 BM BC 同时相切,求此时 DP 的长.

来源:2017年山东省淄博市中考数学试卷
  • 题型:未知
  • 难度:未知

如图,在中,的外接圆,点上,且,过点的垂线,与的延长线相交于点,并与的延长线相交于点

(1)求证:的切线;

(2)若的半径,求的长.

来源:2018年陕西省中考数学试卷(副卷)
  • 题型:未知
  • 难度:未知

综合与实践

折纸是一项有趣的活动,同学们小时候都玩过折纸,可能折过小动物、小花、飞机、小船等,折纸活动也伴随着我们初中数学的学习.

在折纸过程中,我们可以通过研究图形的性质和运动、确定图形位置等,进一步发展空间观念,在经历借助图形思考问题的过程中,我们会初步建立几何直观,折纸往往从矩形纸片开始,今天,就让我们带着数学的眼光来玩一玩折纸,看看折叠矩形的对角线之后能得到哪些数学结论.

实践操作

如图1,将矩形纸片 ABCD 沿对角线 AC 翻折,使点 B ' 落在矩形 ABCD 所在平面内, B ' C AD 相交于点 E ,连接 B ' D

解决问题

(1)在图1中,

B ' D AC 的位置关系为  

②将 ΔAEC 剪下后展开,得到的图形是  

(2)若图1中的矩形变为平行四边形时 ( AB BC ) ,如图2所示,结论①和结论②是否成立,若成立,请挑选其中的一个结论加以证明,若不成立,请说明理由;

(3)小红沿对角线折叠一张矩形纸片,发现所得图形是轴对称图形,沿对称轴再次折叠后,得到的仍是轴对称图形,则小红折叠的矩形纸片的长宽之比为  

拓展应用

(4)在图2中,若 B = 30 ° AB = 4 3 ,当△ AB ' D 恰好为直角三角形时, BC 的长度为  

来源:2018年黑龙江省大兴安岭中考数学试卷
  • 题型:未知
  • 难度:未知

如图①,在中,,点从点出发,沿折线向终点运动,在上以每秒5个单位长度的速度运动,在上以每秒3个单位长度的速度运动,点从点出发,沿方向以每秒个单位长度的速度运动,两点同时出发,当点停止时,点也随之停止.设点运动的时间为秒.

(1)求线段的长;(用含的代数式表示)

(2)连结,当的一边平行时,求的值;

(3)如图②,过点于点,以为邻边作矩形,点的中点,连结.设矩形重叠部分图形的面积为.①当点在线段上运动时,求之间的函数关系式;②直接写出将矩形分成两部分的面积比为的值.

来源:2017年吉林省长春市中考数学试卷
  • 题型:未知
  • 难度:未知

如图①,是矩形的对角线,.将沿射线方向平移到△的位置,使中点,连接,如图②.

(1)求证:四边形是菱形;

(2)四边形的周长为  

(3)将四边形沿它的两条对角线剪开,用得到的四个三角形拼成与其面积相等的矩形,直接写出所有可能拼成的矩形周长.

来源:2017年吉林省中考数学试卷
  • 题型:未知
  • 难度:未知

如图,在矩形中,,点上,将沿折叠,点恰好落在对角线上的点,上一点,经过点

(1)求证:的切线;

(2)在边上截取,点是线段的黄金分割点吗?请说明理由.

来源:2019年山东省烟台市中考数学试卷
  • 题型:未知
  • 难度:未知

如图,在矩形中,为对角线的中点,过点作直线分别与矩形的边交于两点,连接

(1)求证:四边形为平行四边形;

(2)若,且,求的长.

来源:2020年黑龙江省大庆市中考数学试卷
  • 题型:未知
  • 难度:未知

实践操作:

第一步:如图1,将矩形纸片 ABCD 沿过点 D 的直线折叠,使点 A 落在 CD 上的点 A ' 处,得到折痕 DE ,然后把纸片展平.

第二步:如图2,将图1中的矩形纸片 ABCD 沿过点 E 的直线折叠,点 C 恰好落在 AD 上的点 C ' 处,点 B 落在点 B ' 处,得到折痕 EF B ' C ' AB 于点 M C ' F DE 于点 N ,再把纸片展平.

问题解决:

(1)如图1,填空:四边形 AE A ' D 的形状是    

(2)如图2,线段 MC ' ME 是否相等?若相等,请给出证明;若不等,请说明理由;

(3)如图2,若 AC ' = 2 cm D C ' = 4 cm ,求 DN : EN 的值.

来源:2020年湖北省仙桃市、潜江市、天门市、江汉油田中考数学试卷
  • 题型:未知
  • 难度:未知

如图,在矩形 ABCD 中,对角线 AC BD 相交于点 O AOB = 60 ° ,对角线 AC 所在的直线绕点 O 顺时针旋转角 α ( 0 ° < α < 120 ° ) ,所得的直线 l 分别交 AD BC 于点 E F

(1)求证: ΔAOE ΔCOF

(2)当旋转角 α 为多少度时,四边形 AFCE 为菱形?试说明理由.

来源:2021年湖南省张家界市中考数学试卷
  • 题型:未知
  • 难度:未知

如图,矩形 ABCD 中, AB = m BC = n ,将此矩形绕点 B 顺时针方向旋转 θ ( 0 ° < θ < 90 ° ) 得到矩形 A 1 B C 1 D 1 ,点 A 1 在边 CD 上.

(1)若 m = 2 n = 1 ,求在旋转过程中,点 D 到点 D 1 所经过路径的长度;

(2)将矩形 A 1 B C 1 D 1 继续绕点 B 顺时针方向旋转得到矩形 A 2 B C 2 D 2 ,点 D 2 BC 的延长线上,设边 A 2 B CD 交于点 E ,若 A 1 E EC = 6 1 ,求 n m 的值.

来源:2018年江苏省无锡市中考数学试卷
  • 题型:未知
  • 难度:未知

初中数学矩形的性质解答题