如图,在矩形 中,对角线 的垂直平分线分别与边 和边 的延长线交于点 , ,与边 交于点 ,垂足为点 .
(1)求证: ;
(2)若 , ,请直接写出 的长为 .
如图,平面直角坐标系中,已知点 的坐标为 .
(1)请用直尺(不带刻度)和圆规作一条直线 ,它与 轴和 轴的正半轴分别交于点 和点 ,且使 , 与 的面积相等.(作图不必写作法,但要保留作图痕迹.
(2)问:(1)中这样的直线 是否唯一?若唯一,请说明理由;若不唯一,请在图中画出所有这样的直线 ,并写出与之对应的函数表达式.
【教材呈现】如图是华师版八年级下册数学教材第121页的部分内容.
1.把一张矩形纸片如图那样折一下,就可以裁出正方形纸片,为什么?
【问题解决】如图①,已知矩形纸片 ,将矩形纸片沿过点 的直线折叠,使点 落在边 上,点 的对应点为 ,折痕为 ,点 在 上.求证:四边形 是正方形.
【规律探索】由【问题解决】可知,图①中的△ 为等腰三角形.现将图①中的点 沿 向右平移至点 处(点 在点 的左侧),如图②,折痕为 ,点 在 上,点 在 上,那么 还是等腰三角形吗?请说明理由.
[结论应用]在图②中,当 时,将矩形纸片继续折叠如图③,使点 与点 重合,折痕为 ,点 在 上.要使四边形 为菱形,则 .
综合与实践
背景阅读 早在三千多年前,我国周朝数学家商高就提出:将一根直尺折成一个直角,如果勾等于三,股等于四,那么弦就等于五,即“勾三、股四、弦五”.它被记载于我国古代著名数学著作《周髀算经》中,为了方便,在本题中,我们把三边的比为的三角形称为,4,型三角形,例如:三边长分别为9,12,15或,,的三角形就是,4,型三角形,用矩形纸片按下面的操作方法可以折出这种类型的三角形.
实践操作 如图1,在矩形纸片中,,.
第一步:如图2,将图1中的矩形纸片沿过点的直线折叠,使点落在上的点处,折痕为,再沿折叠,然后把纸片展平.
第二步:如图3,将图2中的矩形纸片再次折叠,使点与点重合,折痕为,然后展平,隐去.
第三步:如图4,将图3中的矩形纸片沿折叠,得到△,再沿折叠,折痕为,与折痕交于点,然后展平.
问题解决
(1)请在图2中证明四边形是正方形.
(2)请在图4中判断与的数量关系,并加以证明;
(3)请在图4中证明,4,型三角形;
探索发现
(4)在不添加字母的情况下,图4中还有哪些三角形是,4,型三角形?请找出并直接写出它们的名称.
如图,将矩形纸片 沿直线 折叠,顶点 恰好与 边上的动点 重合(点 不与点 , 重合),折痕为 ,点 , 分别在边 , 上,连接 , , , 与 相交于点 .
(1)求证: ;
(2)①在图2中,作出经过 , , 三点的 (要求保留作图痕迹,不写做法);
②设 ,随着点 在 上的运动,若①中的 恰好与 , 同时相切,求此时 的长.
如图,在中,,是的外接圆,点在上,且,过点作的垂线,与的延长线相交于点,并与的延长线相交于点.
(1)求证:是的切线;
(2)若的半径,,求的长.
综合与实践
折纸是一项有趣的活动,同学们小时候都玩过折纸,可能折过小动物、小花、飞机、小船等,折纸活动也伴随着我们初中数学的学习.
在折纸过程中,我们可以通过研究图形的性质和运动、确定图形位置等,进一步发展空间观念,在经历借助图形思考问题的过程中,我们会初步建立几何直观,折纸往往从矩形纸片开始,今天,就让我们带着数学的眼光来玩一玩折纸,看看折叠矩形的对角线之后能得到哪些数学结论.
实践操作
如图1,将矩形纸片 沿对角线 翻折,使点 落在矩形 所在平面内, 和 相交于点 ,连接 .
解决问题
(1)在图1中,
① 和 的位置关系为 ;
②将 剪下后展开,得到的图形是 ;
(2)若图1中的矩形变为平行四边形时 ,如图2所示,结论①和结论②是否成立,若成立,请挑选其中的一个结论加以证明,若不成立,请说明理由;
(3)小红沿对角线折叠一张矩形纸片,发现所得图形是轴对称图形,沿对称轴再次折叠后,得到的仍是轴对称图形,则小红折叠的矩形纸片的长宽之比为 ;
拓展应用
(4)在图2中,若 , ,当△ 恰好为直角三角形时, 的长度为 .
如图①,在中,,,,点从点出发,沿折线向终点运动,在上以每秒5个单位长度的速度运动,在上以每秒3个单位长度的速度运动,点从点出发,沿方向以每秒个单位长度的速度运动,,两点同时出发,当点停止时,点也随之停止.设点运动的时间为秒.
(1)求线段的长;(用含的代数式表示)
(2)连结,当与的一边平行时,求的值;
(3)如图②,过点作于点,以,为邻边作矩形,点为的中点,连结.设矩形与重叠部分图形的面积为.①当点在线段上运动时,求与之间的函数关系式;②直接写出将矩形分成两部分的面积比为时的值.
如图①,是矩形的对角线,,.将沿射线方向平移到△的位置,使为中点,连接,,,,如图②.
(1)求证:四边形是菱形;
(2)四边形的周长为 ;
(3)将四边形沿它的两条对角线剪开,用得到的四个三角形拼成与其面积相等的矩形,直接写出所有可能拼成的矩形周长.
如图,在矩形中,,,点在上,将沿折叠,点恰好落在对角线上的点,为上一点,经过点,
(1)求证:是的切线;
(2)在边上截取,点是线段的黄金分割点吗?请说明理由.
如图,在矩形中,为对角线的中点,过点作直线分别与矩形的边,交于,两点,连接,.
(1)求证:四边形为平行四边形;
(2)若,,且,求的长.
实践操作:
第一步:如图1,将矩形纸片 沿过点 的直线折叠,使点 落在 上的点 处,得到折痕 ,然后把纸片展平.
第二步:如图2,将图1中的矩形纸片 沿过点 的直线折叠,点 恰好落在 上的点 处,点 落在点 处,得到折痕 , 交 于点 , 交 于点 ,再把纸片展平.
问题解决:
(1)如图1,填空:四边形 的形状是 ;
(2)如图2,线段 与 是否相等?若相等,请给出证明;若不等,请说明理由;
(3)如图2,若 , ,求 的值.
如图,在矩形 中,对角线 与 相交于点 , ,对角线 所在的直线绕点 顺时针旋转角 ,所得的直线 分别交 , 于点 , .
(1)求证: ;
(2)当旋转角 为多少度时,四边形 为菱形?试说明理由.
试题篮
()