如图1,在矩形 中, , ,动点 , 分别从 点, 点同时以每秒1个单位长度的速度出发,且分别在边 , 上沿 , 的方向运动,当点 运动到点 时, , 两点同时停止运动.设点 运动的时间为 ,连接 ,过点 作 , 与边 相交于点 ,连接 .
(1)如图2,当 时,延长 交边 于点 .求证: ;
(2)在(1)的条件下,试探究线段 , , 三者之间的等量关系,并加以证明;
(3)如图3,当 时,延长 交边 于点 ,连接 ,若 平分 ,求 的值.
定义:对角线互相垂直且相等的四边形叫做垂等四边形.
(1)下面四边形是垂等四边形的是 ;(填序号)
①平行四边形;②矩形;③菱形;④正方形
(2)图形判定:如图1,在四边形 中, , ,过点 作 垂线交 的延长线于点 ,且 ,证明:四边形 是垂等四边形.
(3)由菱形面积公式易知性质:垂等四边形的面积等于两条对角线乘积的一半.应用:在图2中,面积为24的垂等四边形 内接于 中, .求 的半径.
实践操作:
第一步:如图1,将矩形纸片 沿过点 的直线折叠,使点 落在 上的点 处,得到折痕 ,然后把纸片展平.
第二步:如图2,将图1中的矩形纸片 沿过点 的直线折叠,点 恰好落在 上的点 处,点 落在点 处,得到折痕 , 交 于点 , 交 于点 ,再把纸片展平.
问题解决:
(1)如图1,填空:四边形 的形状是 ;
(2)如图2,线段 与 是否相等?若相等,请给出证明;若不等,请说明理由;
(3)如图2,若 , ,求 的值.
如图,在矩形 中, ,点 是 边上的一点,将 沿着 折叠,点 刚好落在 边上点 处;点 在 上,将 沿着 折叠,点 刚好落在 上点 处,此时 ,
(1)求证: ;
(2)求 的长;
(3)求 的值.
如图,在矩形 中, ,将 向内翻折,点 落在 上,记为 ,折痕为 .若将 沿 向内翻折,点 恰好落在 上,记为 ,则 .
如图,四边形是矩形,是边上一点,点在的延长线上,且.
(1)求证:四边形是平行四边形;
(2)连接,若,,,求四边形的面积.
如图,在矩形中,,,点是边的中点,反比例函数的图象经过点,交边于点,直线的解析式为.
(1)求反比例函数的解析式和直线的解析式;
(2)在轴上找一点,使的周长最小,求出此时点的坐标;
(3)在(2)的条件下,的周长最小值是 .
如图,在平面直角坐标系中,矩形的边长是的根,连接,,并过点作,垂足为,动点从点以每秒2个单位长度的速度沿方向匀速运动到点为止;点沿线段以每秒个单位长度的速度由点向点匀速运动,到点为止,点与点同时出发,设运动时间为秒.
(1)线段 ;
(2)连接和,求的面积与运动时间的函数关系式;
(3)在整个运动过程中,当是以为腰的等腰三角形时,直接写出点的坐标.
如图,在矩形中,为对角线的中点,过点作直线分别与矩形的边,交于,两点,连接,.
(1)求证:四边形为平行四边形;
(2)若,,且,求的长.
已知:在矩形中,,分别是边,上的点,过点作的垂线交于点,以为直径作半圆.
(1)填空:点 (填“在”或“不在” 上;当时,的值是 ;
(2)如图1,在中,当时,求证:;
(3)如图2,当的顶点是边的中点时,求证:;
(4)如图3,点在线段的延长线上,若,连接交于点,连接,当时,,,求的值.
(1)证明推断:如图(1),在正方形中,点,分别在边,上,于点,点,分别在边,上,.
①求证:;
②推断:的值为 ;
(2)类比探究:如图(2),在矩形中,为常数).将矩形沿折叠,使点落在边上的点处,得到四边形,交于点,连接交于点.试探究与之间的数量关系,并说明理由;
(3)拓展应用:在(2)的条件下,连接,当时,若,,求的长.
如图,矩形中,,,点是对角线的中点,过点的直线分别交、边于点、.
(1)求证:四边形是平行四边形;
(2)当时,求的长.
如图,在平面直角坐标系中,矩形的边,.若不改变矩形的形状和大小,当矩形顶点在轴的正半轴上左右移动时,矩形的另一个顶点始终在轴的正半轴上随之上下移动.
(1)当时,求点的坐标;
(2)设的中点为,连接、,当四边形的面积为时,求的长;
(3)当点移动到某一位置时,点到点的距离有最大值,请直接写出最大值,并求此时的值.
试题篮
()