优题课 - 聚名师,上好课(www.youtike.com)
  首页 / 试题库 / 初中数学试题 / 矩形的性质 / 解答题
初中数学

如图1,在矩形 ABCD 中, AB = 6 BC = 8 ,动点 P Q 分别从 C 点, A 点同时以每秒1个单位长度的速度出发,且分别在边 CA AB 上沿 C A A B 的方向运动,当点 Q 运动到点 B 时, P Q 两点同时停止运动.设点 P 运动的时间为 t ( s ) ,连接 PQ ,过点 P PE PQ PE 与边 BC 相交于点 E ,连接 QE

(1)如图2,当 t = 5 s 时,延长 EP 交边 AD 于点 F .求证: AF = CE

(2)在(1)的条件下,试探究线段 AQ QE CE 三者之间的等量关系,并加以证明;

(3)如图3,当 t > 9 4 s 时,延长 EP 交边 AD 于点 F ,连接 FQ ,若 FQ 平分 AFP ,求 AF CE 的值.

来源:2020年湖南省岳阳市中考数学试卷
  • 题型:未知
  • 难度:未知

定义:对角线互相垂直且相等的四边形叫做垂等四边形.

(1)下面四边形是垂等四边形的是    ;(填序号)

①平行四边形;②矩形;③菱形;④正方形

(2)图形判定:如图1,在四边形 ABCD 中, AD / / BC AC BD ,过点 D BD 垂线交 BC 的延长线于点 E ,且 DBC = 45 ° ,证明:四边形 ABCD 是垂等四边形.

(3)由菱形面积公式易知性质:垂等四边形的面积等于两条对角线乘积的一半.应用:在图2中,面积为24的垂等四边形 ABCD 内接于 O 中, BCD = 60 ° .求 O 的半径.

来源:2020年湖南省怀化市中考数学试卷
  • 题型:未知
  • 难度:未知

实践操作:

第一步:如图1,将矩形纸片 ABCD 沿过点 D 的直线折叠,使点 A 落在 CD 上的点 A ' 处,得到折痕 DE ,然后把纸片展平.

第二步:如图2,将图1中的矩形纸片 ABCD 沿过点 E 的直线折叠,点 C 恰好落在 AD 上的点 C ' 处,点 B 落在点 B ' 处,得到折痕 EF B ' C ' AB 于点 M C ' F DE 于点 N ,再把纸片展平.

问题解决:

(1)如图1,填空:四边形 AE A ' D 的形状是    

(2)如图2,线段 MC ' ME 是否相等?若相等,请给出证明;若不等,请说明理由;

(3)如图2,若 AC ' = 2 cm D C ' = 4 cm ,求 DN : EN 的值.

来源:2020年湖北省仙桃市、潜江市、天门市、江汉油田中考数学试卷
  • 题型:未知
  • 难度:未知

如图,在矩形 ABCD 中, AB = 20 ,点 E BC 边上的一点,将 ΔABE 沿着 AE 折叠,点 B 刚好落在 CD 边上点 G 处;点 F DG 上,将 ΔADF 沿着 AF 折叠,点 D 刚好落在 AG 上点 H 处,此时 S ΔGFH : S ΔAFH = 2 : 3

(1)求证: ΔEGC ΔGFH

(2)求 AD 的长;

(3)求 tan GFH 的值.

来源:2020年湖北省荆州市中考数学试卷
  • 题型:未知
  • 难度:未知

如图,在矩形 ABCD 中, AD = 4 ,将 A 向内翻折,点 A 落在 BC 上,记为 A 1 ,折痕为 DE .若将 B 沿 E A 1 向内翻折,点 B 恰好落在 DE 上,记为 B 1 ,则 AB =    

来源:2020年贵州省铜仁市中考数学试卷
  • 题型:未知
  • 难度:未知

如图,四边形是矩形,边上一点,点的延长线上,且

(1)求证:四边形是平行四边形;

(2)连接,若,求四边形的面积.

来源:2020年贵州省贵阳市中考数学试卷
  • 题型:未知
  • 难度:未知

如图,在矩形中,,点是边的中点,反比例函数的图象经过点,交边于点,直线的解析式为

(1)求反比例函数的解析式和直线的解析式;

(2)在轴上找一点,使的周长最小,求出此时点的坐标;

(3)在(2)的条件下,的周长最小值是   

来源:2020年黑龙江省绥化市中考数学试卷
  • 题型:未知
  • 难度:未知

如图,在平面直角坐标系中,矩形的边长是的根,连接,并过点,垂足为,动点点以每秒2个单位长度的速度沿方向匀速运动到点为止;点沿线段以每秒个单位长度的速度由点向点匀速运动,到点为止,点与点同时出发,设运动时间为

(1)线段  

(2)连接,求的面积与运动时间的函数关系式;

(3)在整个运动过程中,当是以为腰的等腰三角形时,直接写出点的坐标.

来源:2020年黑龙江省七台河市中考数学试卷(农垦、森工用)
  • 题型:未知
  • 难度:未知

中,.以为边作周长为18的矩形分别为的中点,连接.请你画出图形,并直接写出线段的长.

来源:2020年黑龙江省牡丹江市中考数学试卷
  • 题型:未知
  • 难度:未知

如图,在矩形中,为对角线的中点,过点作直线分别与矩形的边交于两点,连接

(1)求证:四边形为平行四边形;

(2)若,且,求的长.

来源:2020年黑龙江省大庆市中考数学试卷
  • 题型:未知
  • 难度:未知

已知:在矩形中,分别是边上的点,过点的垂线交于点,以为直径作半圆

(1)填空:点  (填“在”或“不在” 上;当时,的值是  

(2)如图1,在中,当时,求证:

(3)如图2,当的顶点是边的中点时,求证:

(4)如图3,点在线段的延长线上,若,连接于点,连接,当时,,求的值.

来源:2019年湖北省宜昌市中考数学试卷
  • 题型:未知
  • 难度:未知

(1)证明推断:如图(1),在正方形中,点分别在边上,于点,点分别在边上,

①求证:

②推断:的值为  

(2)类比探究:如图(2),在矩形中,为常数).将矩形沿折叠,使点落在边上的点处,得到四边形于点,连接于点.试探究之间的数量关系,并说明理由;

(3)拓展应用:在(2)的条件下,连接,当时,若,求的长.

来源:2019年湖北省襄阳市中考数学试卷
  • 题型:未知
  • 难度:未知

如图,矩形中,,点是对角线的中点,过点的直线分别交边于点

(1)求证:四边形是平行四边形;

(2)当时,求的长.

来源:2019年湖北省鄂州市中考数学试卷
  • 题型:未知
  • 难度:未知

如图,在平面直角坐标系中,矩形的边.若不改变矩形的形状和大小,当矩形顶点轴的正半轴上左右移动时,矩形的另一个顶点始终在轴的正半轴上随之上下移动.

(1)当时,求点的坐标;

(2)设的中点为,连接,当四边形的面积为时,求的长;

(3)当点移动到某一位置时,点到点的距离有最大值,请直接写出最大值,并求此时的值.

来源:2019年湖南省益阳市中考数学试卷
  • 题型:未知
  • 难度:未知

如图,抛物线过点,矩形的边在线段上(点在点的左侧),点在抛物线上,的平分线于点,点的中点,已知,且

(1)求抛物线的解析式;

(2)分别为轴,轴上的动点,顺次连接构成四边形,求四边形周长的最小值;

(3)在轴下方且在抛物线上是否存在点,使边上的高为?若存在,求出点的坐标;若不存在,请说明理由;

(4)矩形不动,将抛物线向右平移,当平移后的抛物线与矩形的边有两个交点,且直线平分矩形的面积时,求抛物线平移的距离.

来源:2019年湖南省湘西州中考数学试卷
  • 题型:未知
  • 难度:未知

初中数学矩形的性质解答题