如图,矩形 中,延长 至 ,延长 至 , ,连接 ,与 、 分别相交于 、 两点.
(1)求证: ;
(2)若 , , ,求矩形 的面积.
(2) , ,
,
;
又 ,
,
;
方法一:在 中, ,
连接 ,设 的半径为 ,则在 中, ,即
解得:
方法二: ,过点 作 于点 ,则
在 中,
本题考查了圆的综合题:圆的切线垂直于过切点的半径;利用勾股定理计算线段的长.
如图,矩形 的顶点 、 分别位于 轴和 轴的正半轴上,线段 、 的长度满足方程 ,直线 分别与 轴、 轴交于 、 两点,将 沿直线 折叠,点 恰好落在直线 上的点 处,且
(1)求点 的坐标;
(2)求直线 的解析式;
(3)将直线 以每秒1个单位长度的速度沿 轴向下平移,求直线 扫过矩形 的面积 关于运动的时间 的函数关系式.
如图,在矩形 中, , 分别是 , 边上的点,且 .
(1)求证: ;
(2)当 时,四边形 是菱形吗?请说明理由.
在平面直角坐标系中,矩形 的顶点坐标为 , , , , , 交于点 .
(1)如图(1),双曲线 过点 ,直接写出点 的坐标和双曲线的解析式;
(2)如图(2),双曲线 与 , 分别交于点 , ,点 关于 的对称点 在 轴上.求证 ,并求点 的坐标;
(3)如图(3),将矩形 向右平移 个单位长度,使过点 的双曲线 与 交于点 .当 为等腰三角形时,求 的值.
如图,在矩形 中,以 边为直径作半圆 , 交 边于点 ,对角线 与半圆 的另一个交点为 ,连接 .
(1)求证: 是半圆 的切线;
(2)若 , ,求 的长.
(1)如图1,在正方形 中,点 , 分别在 , 上, 于点 ,求证: ;
(2)如图2,将 (1)中的正方形 改为矩形 , , , 于点 ,探究 与 的数量关系,并证明你的结论.
如图,矩形 的对角线 , 相交于点 ,点 , 在 上, .
(1)求证: ;
(2)若 , ,求矩形 的面积.
矩形 中, 、 分别是 、 的中点, 、 分别交 于 、 两点.
求证:(1)四边形 是平行四边形;
(2) .
已知矩形 中, 是 边上的一个动点,点 , , 分别是 , , 的中点.
(1)求证: ;
(2)设 ,当四边形 是正方形时,求矩形 的面积.
如图,在矩形 中,点 在边 上,且 ,过点 作 ,垂足为点
(1)求证: ;
(2)以 为圆心, 长为半径作圆弧交 于点 ,若 ,求扇形 的面积.(结果保留
如图,在直角坐标系 中,矩形 的顶点 、 分别在 轴和 轴正半轴上,点 的坐标是 ,点 是 边上一动点(不与点 、点 重合),连接 、 ,过点 作射线 交 的延长线于点 ,交 边于点 ,且 ,令 , .
(1)当 为何值时, ?
(2)求 与 的函数关系式,并写出 的取值范围;
(3)在点 的运动过程中,是否存在 ,使 的面积与 的面积之和等于 的面积?若存在,请求 的值;若不存在,请说明理由.
如图,已知 的半径为 ,射线 经过点 , ,射线 与 相切于点 . 、 两点同时从点 出发,点 以 的速度沿射线 方向运动,点 以 的速度沿射线 方向运动,设运动时间为 .
(1)求 的长;
(2)当直线 与 相切时,求证: ;
(3)当 为何值时,直线 与 相切?
如图①,在△ABC中, , , ,D为AB的中点,EF为△ACD的中位线,四边形EFGH为△ACD的内接矩形(矩形的四个顶点均在△ACD的边上).
(1)计算矩形EFGH的面积;
(2)将矩形EFGH沿AB向右平移,F落在BC上时停止移动.在平移过程中,当矩形与△CBD重叠部分的面积为 时,求矩形平移的距离;
(3)如图③,将(2)中矩形平移停止时所得的矩形记为矩形E1F1G1H1,将矩形E1F1G1H1绕G1点按顺时针方向旋转,当H1落在CD上时停止转动,旋转后的矩形记为矩形E2F2G1H2,设旋转角为α,求cosα的值.
试题篮
()