优题课 - 聚名师,上好课(www.youtike.com)
  首页 / 试题库 / 初中数学试题 / 正方形的判定与性质
初中数学

如图,在 Rt Δ ABC 中, ABC = 90 ° AB = 6 BC = 8 BAC ACB 的平分线相交于点 E ,过点 E EF / / BC AC 于点 F ,则 EF 的长为 (    )

A. 5 2 B. 8 3 C. 10 3 D. 15 4

来源:2017年山东省淄博市中考数学试卷
  • 题型:未知
  • 难度:未知

如图, Rt Δ ABC 中, ACB = 90 ° CD 平分 ACB AB 于点 D ,按下列步骤作图:

步骤1:分别以点 C 和点 D 为圆心,大于 1 2 CD 的长为半径作弧,两弧相交于 M N 两点;

步骤2:作直线 MN ,分别交 AC BC 于点 E F

步骤3:连接 DE DF

AC = 4 BC = 2 ,则线段 DE 的长为 (    )

A. 5 3 B. 3 2 C. 2 D. 4 3

来源:2018年江苏省南通市中考数学试卷
  • 题型:未知
  • 难度:未知

菱形 ABCD 的对角线 AC BD 相交于点 O 0 ° < ABO 60 ° ,点 G 是射线 OD 上一个动点,过点 G GE / / DC 交射线 OC 于点 E ,以 OE OG 为邻边作矩形 EOGF

(1)如图1,当点 F 在线段 DC 上时,求证: DF = FC

(2)若延长 AD 与边 GF 交于点 H ,将 ΔGDH 沿直线 AD 翻折 180 ° 得到 ΔMDH

①如图2,当点 M EG 上时,求证:四边形 EOGF 为正方形;

②如图3,当 tan ABO 为定值 m 时,设 DG = k · DO k 为大于0的常数,当且仅当 k > 2 时,点 M 在矩形 EOGF 的外部,求 m 的值.

来源:2020年湖北省宜昌市中考数学试卷
  • 题型:未知
  • 难度:未知

在△ABC中, AB 6 AC 8 BC 10 D是△ABC内部或BC边上的一个动点(与BC不重合),以D为顶点作△DEF,使△DEF∽△ABC(相似比k>1),EFBC

(1)求∠D的度数;

(2)若两三角形重叠部分的形状始终是四边形AGDH

①如图1,连接GHAD,当 GH AD 时,请判断四边形AGDH的形状,并证明;

②当AGDH的面积最大时,过A AP EF P,且 AP AD ,求k的值.

来源:2016年湖北省宜昌市中考数学试卷
  • 题型:未知
  • 难度:未知

如图1,在四边形 ABCD 中,如果对角线 AC BD 相交并且相等,那么我们把这样的四边形称为等角线四边形.

(1)①在“平行四边形、矩形、菱形”中,      一定是等角线四边形(填写图形名称);

②若 M N P Q 分别是等角线四边形 ABCD 四边 AB BC CD DA 的中点,当对角线 AC BD 还要满足  时,四边形 MNPQ 是正方形.

(2)如图2,已知 ΔABC 中, ABC = 90 ° AB = 4 BC = 3 D 为平面内一点.

①若四边形 ABCD 是等角线四边形,且 AD = BD ,则四边形 ABCD 的面积是   

②设点 E 是以 C 为圆心,1为半径的圆上的动点,若四边形 ABED 是等角线四边形,写出四边形 ABED 面积的最大值,并说明理由.

来源:2017年江苏省常州市中考数学试卷
  • 题型:未知
  • 难度:未知

如图, AB O 的直径,点 D O 上(点 D 不与 A B 重合),直线 AD 交过点 B 的切线于点 C ,过点 D O 的切线 DE BC 于点 E

(1)求证: BE = CE

(2)若 DE / / AB ,求 sin ACO 的值.

来源:2018年四川省绵阳市中考数学试卷
  • 题型:未知
  • 难度:未知

如图,在正方形 ABCD 中, H CD 的中点,延长 AH F ,使 AH = 3 FH ,过 F FG CD ,垂足为 G ,过 F BC 的垂线交 BC 的延长线于点 E

(1)求证: ΔADH ΔFGH

(2)求证:四边形 CEFG 是正方形.

来源:2017年广西来宾市中考数学试卷
  • 题型:未知
  • 难度:未知

如图,正方形中,点分别为上的点,且 AE = CF = 1 3 AB ,点为线段的中点,过点作直线与正方形的一组对边分别交于两点,并且满足,则这样的直线(不同于  条.

来源:2016年福建省南平市中考数学试卷
  • 题型:未知
  • 难度:未知

如图,在正方形ABCD中,△ABE和△CDF为直角三角形, AEB CFD 90 ° AE CF 5 BE DF 12 ,则EF的长是(  )

A.7B.8C. 7 2 D. 7 3

来源:2016年湖南省郴州市中考数学试卷
  • 题型:未知
  • 难度:未知

如图(1),已知点 G 在正方形 ABCD 的对角线 AC 上, GE BC ,垂足为点 E GF CD ,垂足为点 F

(1)证明与推断:

①求证:四边形 CEGF 是正方形;

②推断: AG BE 的值为       

(2)探究与证明:

将正方形 CEGF 绕点 C 顺时针方向旋转 α ( 0 ° < α < 45 ° ) ,如图(2)所示,试探究线段 AG BE 之间的数量关系,并说明理由;

(3)拓展与运用:

正方形 CEGF 在旋转过程中,当 B E F 三点在一条直线上时,如图(3)所示,延长 CG AD 于点 H .若 AG = 6 GH = 2 2 ,则 BC =       

来源:2018年湖北省襄阳市中考数学试卷
  • 题型:未知
  • 难度:未知

如图,在矩形纸片 ABCD 中,将 AB 沿 BM 翻折,使点 A 落在 BC 上的点 N 处, BM 为折痕,连接 MN ;再将 CD 沿 CE 翻折,使点 D 恰好落在 MN 上的点 F 处, CE 为折痕,连接 EF 并延长交 BM 于点 P ,若 AD = 8 AB = 5 ,则线段 PE 的长等于   

来源:2019年山东省济南市中考数学试卷
  • 题型:未知
  • 难度:未知

如图,四边形中,对角线交于点,且

(1)求证:四边形是正方形;

(2)若是边上一点不重合),连接,将线段绕点顺时针旋转,得到线段,过点分别作延长线的垂线,垂足分别为.设四边形的面积为,以为邻边的矩形的面积为,且.当时,求的长.

来源:2020年广西玉林市中考数学试卷
  • 题型:未知
  • 难度:未知

【教材呈现】如图是华师版八年级下册数学教材第121页的部分内容.

1.把一张矩形纸片如图那样折一下,就可以裁出正方形纸片,为什么?

【问题解决】如图①,已知矩形纸片 ABCD ( AB > AD ) ,将矩形纸片沿过点 D 的直线折叠,使点 A 落在边 DC 上,点 A 的对应点为 A ' ,折痕为 DE ,点 E AB 上.求证:四边形 AEA ' D 是正方形.

【规律探索】由【问题解决】可知,图①中的△ A ' DE 为等腰三角形.现将图①中的点 A ' 沿 DC 向右平移至点 Q 处(点 Q 在点 C 的左侧),如图②,折痕为 PF ,点 F DC 上,点 P AB 上,那么 ΔPQF 还是等腰三角形吗?请说明理由.

[结论应用]在图②中,当 QC = QP 时,将矩形纸片继续折叠如图③,使点 C 与点 P 重合,折痕为 QG ,点 G AB 上.要使四边形 PGQF 为菱形,则 AD AB =    

来源:2020年吉林省长春市中考数学试卷
  • 题型:未知
  • 难度:未知

综合与实践

问题情境:

如图①,点 E 为正方形 ABCD 内一点, AEB = 90 ° ,将 Rt Δ ABE 绕点 B 按顺时针方向旋转 90 ° ,得到 ΔCBE ' (点 A 的对应点为点 C ) .延长 AE CE ' 于点 F ,连接 DE

猜想证明:

(1)试判断四边形 B E ' FE 的形状,并说明理由;

(2)如图②,若 DA = DE ,请猜想线段 CF F E ' 的数量关系并加以证明;

解决问题:

(3)如图①,若 AB = 15 CF = 3 ,请直接写出 DE 的长.

来源:2020年山西省中考数学试卷
  • 题型:未知
  • 难度:未知

如图所示,在矩形ABCD中, DAC 65 ° ,点ECD上一点,BEAC于点F,将△BCE沿BE折叠,点C恰好落在AB边上的点C′处,则 AFC '   

来源:2017年甘肃省天水市中考数学试卷
  • 题型:未知
  • 难度:未知

初中数学正方形的判定与性质试题