如图,折叠矩形OABC的一边BC,使点C落在OA边的点D处,已知折痕BE=5,且,以O为原点,OA所在的直线为x轴建立如图所示的平面直角坐标系,抛物线l:y=-+c经过点E,且与AB边相交于点F.
(1)求证:△ABD∽△ODE;
(2)若M是BE的中点,连接MF,求证:MF⊥BD;
(3)P是线段BC上一点,点Q在抛物线l上,且始终满足PD⊥DQ,在点P运动过程中,能否使得PD=DQ?若能,求出所有符合条件的Q点坐标;若不能,请说明理由.
在四边形ABCD中,O是对角线的交点,能判定这个四边形是正方形的是( )
A.AC=BD,AB∥CD,AB=CD |
B.AD∥BC,∠A=∠C |
C.AO=BO=CO=DO,AC⊥BD |
D.AO=CO,BO=DO,AB=BC |
如图,小明从A点出发,沿直线前进12米后向左转36°,再沿直线前进12米,又向左转36°…照这样走下去,他第一次回到出发地A点时,一共走了 米.
将矩形纸片ABCD (图①)按如下步骤操作:(1)以过点A的直线为折痕折叠纸片,使点B恰好落在AD边上,折痕与BC边交于点E(如图②);(2)以过点E的直线为折痕折叠纸片,使点A落在BC边上,折痕EF交AD边于点F(如图③);(3)将纸片收展平,那么∠AFE的度数为( )
A.60° | B.67.5° | C.72° | D.75° |
图①,图②,图③都是4×4的正方形网格,每个小正方形的顶点称为格点,每个小正方形的边长均为1.在图①,图②中已画出线段AB,在图③中已画出点A.按下列要求画图:
(1)在图①中,以格点为顶点,AB为一边画一个等腰三角形;
(2)在图②中,以格点为顶点,AB为一边画一个正方形;
(3)在图③中,以点A为一个顶点,另外三个顶点也在格点上,画一个面积最大的正方形.
如图,在菱形ABCD中,点A在x轴上,点B的坐标为(8,2),点D的坐标为(0,2),则点C的坐标为 .
以下说法错误的是
A. |
多边形的内角大于任何一个外角 |
B. |
任意多边形的外角和是 |
C. |
正六边形是中心对称图形 |
D. |
圆内接四边形的对角互补 |
下列命题中,正确的是( )
A.四边相等的四边形是正方形 |
B.四角相等的四边形是正方形 |
C.对角线相等的菱形是正方形 |
D.对角线垂直且相等的四边形是正方形 |
一个多边形的内角和是900°,则这个多边形的边数为( )
A.6 | B.7 | C.8 | D.9 |
如图,平行四边形ABCD中,AE平分∠BAD交BC边于E,EF⊥AE交CD边于F,延长BA到点G,使AG=CF,连接GF.若BC=7,DF=3,tan∠AEB=3,则GF的长为 .
(本小题满分10分) 如图,正方形ABCD的对角线AC,BD交于点O,将一三角尺的直角顶点放在点O处,让其绕点O旋转,三角尺的直角边与正方形ABCD的两边交于点E和F。通过观察或测量OE,OF的长度,你发现了什么?试说明理由。
如图,正方形ABCD和正△AEF都内接于⊙O,EF与BC、CD分别相交于点G、H,则的值是( )
A. B. C. D.2
试题篮
()