如图,正方形纸片ABCD的边长为8,将其沿EF折叠,
则图中①②③④四个三角形的周长之和为 ▲ .
如图,在平行四边形ABCD中,CD=10,F是AB边上一点,DF交AC于点E,
且= ,BF= .
(本小题满分8分)
已知:如图,在正方形ABCD中,点E、F分别在BC和CD上,AE = AF.
(1)求证:BE = DF;
(2)连接AC交EF于点O,延长OC至点M,使OM = OA,连接EM、FM.判断四边形AEMF是什么特殊四边形?并证明你的结论.
.把一张矩形纸片(矩形ABCD)按如图方式折叠,使顶点B和点D重合,折痕为EF.若AB= 3 cm,BC= 5 cm,则重叠部分△DEF的面积是 cm2.
如图3,
在5×5正方形网格中,一条圆弧经过A,B,C三点,那么这条圆弧所在圆的圆心是
A.点P | B.点Q | C.点R | D.点M |
如图2,在□ABCD中,AC平分∠DAB,AB = 3, 则□ABCD的周长为
A.6 | B.9 | C.12 | D.15 |
如图,在梯形ABCD中,AB∥CD
(1)用尺规作图方法,作∠DAB的角平分线AF(只保留作图痕迹,不写作法和证明)
(2)若AF交CD边于点E,判断△ADE的形状(只写结果)
如图,P是菱形ABCD对角线BD上一点,PE⊥AB于点E,PE=4cm,
则点P到BC的距离是_____cm.
如图,在梯形ABCD中,AD∥BC,∠B=90°,BC=6,AD=3,∠DCB=30°.点E、F同时从B点出发,沿射线BC向右匀速移动.已知F点移动速度是E点移动速度的2倍,以EF为一边在CB的上方作等边△EFG.设E点移动距离为x(x>0).
⑴△EFG的边长是____(用含有x的代数式表示),当x=2时,点G的位置在_______;
⑵若△EFG与梯形ABCD重叠部分面积是y,求
①当0<x≤2时,y与x之间的函数关系式;
②当2<x≤6时,y与x之间的函数关系式;
⑶探求⑵中得到的函数y在x取含何值时,存在最大值,并求出最大值.
如图4,等腰梯形ABCD中,AD∥BC,AB=DC=5,中位线EF的长为6,则这个等腰梯形的周长为
A.11 | B.16 | C.17 | D.22 |
如图3,矩形内两相邻正方形的面积分别是2和6,那么矩形内阴影部分的面积是
A.2-2 | B.3-2 | C.2-1 | D.6-2 |
如图2,将△ABC沿DE翻折,折痕DE∥BC,若,BC=6,则DE长等于
A.1.8 | B.2 | C.2.5 | D.3 |
.(10分)如图9,正方形ABCD边长为10cm,P、Q分别是BC、CD上的两个动点,当P 点在BC上运动时,且A P⊥PQ.
(1)求证:△ABP∽△PCQ;
(2)当BP等于多少时,四边形ABCQ的面积为62cm2.
如图7,一个农户用24m长的篱笆围成一排一面靠墙、大小相等且彼此相连的三个矩形鸡舍.
要使这三个鸡舍的总面积为36m2,求每个鸡舍的长和宽各是多少.
试题篮
()