优题课 - 聚名师,上好课(www.youtike.com)
  首页 / 试题库 / 初中数学试题 / 圆内接四边形的性质 / 解答题
初中数学

将图1中的矩形ABCD沿对角线AC剪开,再把△ABC沿着AD方向平移,得到图2中的△A′BC′
写出图2中的两对全等的三角形(不能添加辅助线和字母,△C′BA′△ADC除外);
选择一对加以证明.

  • 题型:未知
  • 难度:未知

如图,在正方形ABCD和正方形ECGF中,连接BE,DG.求证:BE=DG

  • 题型:未知
  • 难度:未知

已知直角坐标系中菱形ABCD的位置如图,C,D两点的坐标分别为(4,0),(0,3).现有两动点P,Q分别从A,C同时出发,点P沿线段AD向终点D运动,点Q沿折线CBA向终点A运动,设运动时间为t秒.

填空:菱形ABCD的边长是 ▲  、面积是 ▲  
高BE的长是  
探究下列问题:
①若点P的速度为每秒1个单位,点Q的速度为每秒2个单位.当点Q在线段BA上求△APQ的面积S关于t的函数关系式,以及S的最大值;
②若点P的速度为每秒1个单位,点Q的速度变为每秒k个单位,在运动过程中,任何时刻都有相应的k值,使得APQ沿它的一边翻折,翻折前后两个三角形组成的四边形为菱形.请探究当t=4秒时的情形,并求出k的值

  • 题型:未知
  • 难度:未知

如图,已知在□ABCD中,AB⊥AC,AB=OA,BC=,对角线AC、BD交于O点,将直线AC绕点O顺时针旋转,分别交BC、AD于点EF.

(1)证明:当旋转角为90°时,四边形ABEF是平行四边形;
(2)试证明在旋转过程中,线段AF与EC总保持相等;
(3)在旋转过程中,四边形BEDF可能是菱形吗?如果不可能,请说明理由;如果可能,说明理由并求出此时AC绕点O顺时针旋转的度数.

  • 题型:未知
  • 难度:未知

如图,的一条角平分线,于点于点,求证:四边形是菱形

证明:的一条角平分线


(                               )
____________(等量代换)
____________(等角对等边)

即___________________,_____________________
四边形是平行四边形(_________________________________)
是菱形(____________________________________________)

  • 题型:未知
  • 难度:未知

如图,纸上有五个边长为1的小正方形组成的图形纸,我们可以把它剪开拼成一个正方形.

(1)拼成的正方形的面积与边长分别是多少?
(2)如图所示,以数轴的单位长度的线段为边作一个直角三角形,以数轴的-1点为圆心,直角三角形的最大边为半径画弧,交数轴正半轴于点A,那么点A表示的数是多少?点A表示的数的相反数是多少?
(3)你能把十个小正方形组成的图形纸,剪开并拼成正方形吗?若能,请画出示意图,并求它的边长

  • 题型:未知
  • 难度:未知

学校组织同学们参加劳动实践.如图,是要做的一个零件形状.按规定,图中的∠A应等于90°,∠B和∠C分别是28°和20°.检验人员度量出王刚同学所做零件中的∠BDC=140°,请你应用所学的数学知识确定这个零件是否合格,并说明你的理由.

  • 题型:未知
  • 难度:未知

如图,在□ABCD中,E、F分别在AD、BC边上,且AE=CF.请你猜想BE与DF的关系,并说明理由.

  • 题型:未知
  • 难度:未知

如图所示,在菱形ABCD中,AB=4,∠BAD=120°,△AEF为正三角形,点E、F分别在菱形的边BC、CD上滑动,且E、F不与B、C、D重合.

(1)证明不论E、F在BC.CD上如何滑动,总有BE=CF;
(2)当点E、F在BC.CD上滑动时,分别探讨四边形AECF的面积和△CEF的周长是否发生变化?如果不变,求出这个定值;如果变化,求出最小值.

  • 题型:未知
  • 难度:未知

如图,在平面直角坐标系中,AD=8,OD=OB,□ABCD的面积为24,求平行四边形的4个顶点的坐标.

  • 题型:未知
  • 难度:未知

(1)如图1,已知△ABC,以AB、AC为边向△ABC外作等边△ABD和等边△ACE,连接BE,CD,请你完成图形(尺规作图,保留作图痕迹),并猜想BE与CD的关系:___________;你是通过证明_______________ 得到的。
(2)如图2,已知△ABC,以AB、AC为边向外作正方形ABFD和正方形ACGE,连接BE,CD,BE与CD有什么数量关系?并说明理由;
(3)运用(1)、(2)解答中所积累的经验和知识,完成下题:
如图3,要测量池塘两岸相对的两点B,E的距离,已经测得∠ABC=45°,∠CAE=90°,AB=BC=100米,AC=AE,求BE的长.

  • 题型:未知
  • 难度:未知

如图,将长方形ABCD沿着对角线BD折叠,使点C落在C′处,BC′交AD于点E.

(1)试判断△BDE的形状,并说明理由;
(2)若AB=4,AD=8,求△BDE的面积.

  • 题型:未知
  • 难度:未知

如图,正方形网格中,每个小正方形的边长均为1,每个小正方形的顶点叫格点,以格点为顶点按下列要求画图:
(1)在图①中画一条线段MN,使MN=
(2)在图②中画一个△ABC,使其三边长分别为3,

  • 题型:未知
  • 难度:未知

如图,在平行四边形ABCD中,AE=CF,求证:AF=CE.

  • 题型:未知
  • 难度:未知

把一副三角板如图(1)放置,其中∠ACB=∠DEC=90°,∠A=45°,∠D=30°,斜边AB=12cm,DC=14cm,把三角板DCE绕点C逆时针旋转15°得到△(如图2).这时AB与相交于点O,与相交于点F.

(1)填空:∠=     °;
(2)请求出△的内切圆半径;
(3)把△绕着点C逆时针再旋转度()得△,若△为等腰三角形,求的度数(精确到0.1°).

  • 题型:未知
  • 难度:未知

初中数学圆内接四边形的性质解答题