优题课 - 聚名师,上好课(www.youtike.com)
  首页 / 试题库 / 初中数学试题 / 圆的综合题 / 解答题
初中数学

如图,点 A O 直径 BD 延长线上的一点, C O 上, AC = BC AD = CD

(1)求证: AC O 的切线;

(2)若 O 的半径为2,求 ΔABC 的面积.

来源:2016年贵州省黔西南州中考数学试卷
  • 题型:未知
  • 难度:未知

如图, BC O 的直径, AD O 的弦, AD BC 于点 E ,连接 AB CD ,过点 E EF AB ,垂足为 F AEF = D

(1)求证: AD BC

(2)点 G BC 的延长线上,连接 AG DAG = 2 D

①求证: AG O 相切;

②当 AF BF = 2 5 CE = 4 时,直接写出 CG 的长.

来源:2020年辽宁省盘锦市中考数学试卷
  • 题型:未知
  • 难度:未知

数学活动﹣旋转变换

(1)如图①,在△ABC中, ABC 130 ° ,将△ABC绕点C逆时针旋转50°得到△ABC,连接BB′,求∠ABB的大小;

(2)如图②,在△ABC中, ABC 150 ° AB 3 BC 5 ,将△ABC绕点C逆时针旋转60°得到△ABC,连接BB′,以A′为圆心,AB′长为半径作圆.

(Ⅰ)猜想:直线BB′与⊙A′的位置关系,并证明你的结论;

(Ⅱ)连接AB,求线段AB的长度;

(3)如图③,在△ABC中, ABC α 90 ° α 180 ° AB m BC n ,将△ABC绕点C逆时针旋转2β角度 0 ° 2 β 180 ° 得到△ABC,连接ABBB′,以A′为圆心,AB′长为半径作圆,问:角α与角β满足什么条件时,直线BB′与⊙A′相切,请说明理由,并求此条件下线段AB的长度(结果用角α或角β的三角函数及字母mn所组成的式子表示)

来源:2016年湖南省岳阳市中考数学试卷
  • 题型:未知
  • 难度:未知

如图1,与直线相离,过圆心作直线的垂线,垂足为,且交两点之间).我们把点称为关于直线的“远点“,把的值称为关于直线的“特征数”.

(1)如图2,在平面直角坐标系中,点的坐标为.半径为1的与两坐标轴交于点

①过点画垂直于轴的直线,则关于直线的“远点”是点  (填“”.“ ”、“ ”或“关于直线的“特征数”为  

②若直线的函数表达式为.求关于直线的“特征数”;

(2)在平面直角坐标系中,直线经过点,点是坐标平面内一点,以为圆心,为半径作.若与直线相离,点关于直线的“远点”.且关于直线的“特征数”是,求直线的函数表达式.

来源:2020年江苏省常州市中考数学试卷
  • 题型:未知
  • 难度:未知

如果三角形三边的长 a b c 满足 a + b + c 3 = b ,那么我们就把这样的三角形叫做“匀称三角形”,如:三边长分别为1,1,1或3,5,7, 的三角形都是“匀称三角形”.

(1)如图1,已知两条线段的长分别为 a c ( a < c ) .用直尺和圆规作一个最短边、最长边的长分别为 a c 的“匀称三角形”(不写作法,保留作图痕迹);

(2)如图2, ΔABC 中, AB = AC ,以 AB 为直径的 O BC 于点 D ,过点 D O 的切线交 AB 延长线于点 E ,交 AC 于点 F ,若 BE CF = 5 3 ,判断 ΔAEF 是否为“匀称三角形”?请说明理由.

来源:2016年江苏省镇江市中考数学试卷
  • 题型:未知
  • 难度:未知

定义:有一组对角互余的四边形叫做对余四边形.

理解:

(1)若四边形 ABCD 是对余四边形,则 A C 的度数之和为        

证明:

(2)如图1, MN O 的直径,点 A B C O 上, AM CN 相交于点 D

求证:四边形 ABCD 是对余四边形;

探究:

(3)如图2,在对余四边形 ABCD 中, AB = BC ABC = 60 ° ,探究线段 AD CD BD 之间有怎样的数量关系?写出猜想,并说明理由.

来源:2020年湖北省咸宁市中考数学试卷
  • 题型:未知
  • 难度:未知

在平面直角坐标系中,△ABC三个顶点坐标为 A ( - 3 , 0 ) B ( 3 , 0 )

(1)求△ABC内切圆⊙D的半径.

(2)过点 E 0 ,﹣ 1 的直线与⊙D相切于点F(点F在第一象限),求直线EF的解析式.

(3)以(2)为条件,P为直线EF上一点,以P为圆心,以 2 7 为半径作⊙P.若⊙P上存在一点到△ABC三个顶点的距离相等,求此时圆心P的坐标.

来源:2016年湖南省衡阳市中考数学试卷
  • 题型:未知
  • 难度:未知

如图所示:的边相切于点,与分别交于点的直径.连接,过,连接交于点

(1)求证:直线相切;

(2)求证:

(3)若时,过两点在线段上),求的长.

来源:2020年湖北省鄂州市中考数学试卷
  • 题型:未知
  • 难度:未知

如图,四边形 ABCD 内接于圆 O BAD = 90 ° AC 为直径,过点 A 作圆 O 的切线交 CB 的延长线于点 E ,过 AC 的三等分点 F (靠近点 C ) CE 的平行线交 AB 于点 G ,连接 CG

(1)求证: AB = CD

(2)求证: C D 2 = BE BC

(3)当 CG = 3 BE = 9 2 时,求 CD 的长.

来源:2017年黑龙江省大庆市中考数学试卷
  • 题型:未知
  • 难度:未知

如图1,在△ ABC中, ABAC,⊙ O是△ ABC的外接圆,过点 C作∠ BCD=∠ ACB交⊙ O于点 D,连接 ADBC于点 E,延长 DC至点 F,使 CFAC,连接 AF

(1)求证: EDEC

(2)求证: AF是⊙ O的切线;

(3)如图2,若点 G是△ ACD的内心, BCBE=25,求 BG的长.

来源:2019年广东省中考数学试卷
  • 题型:未知
  • 难度:未知

已知 ΔABC 内接于 O AB = AC BAC = 42 ° ,点 D O 上一点.

(Ⅰ)如图①,若 BD O 的直径,连接 CD ,求 DBC ACD 的大小;

(Ⅱ)如图②,若 CD / / BA ,连接 AD ,过点作 O 的切线,与 OC 的延长线交于点 E ,求 E 的大小.

来源:2021年天津市中考数学试卷
  • 题型:未知
  • 难度:未知

如图1, D O 的直径 BC 上的一点,过 D DE BC O E N F O 上的一点,过 F 的直线分别与 CB DE 的延长线相交于 A P ,连接 CF PD M C = 1 2 P

(1)求证: PA O 的切线;

(2)若 A = 30 ° O 的半径为4, DM = 1 ,求 PM 的长;

(3)如图2,在(2)的条件下,连接 BF BM ;在线段 DN 上有一点 H ,并且以 H D C 为顶点的三角形与 ΔBFM 相似,求 DH 的长度.

来源:2018年四川省广元市中考数学试卷
  • 题型:未知
  • 难度:未知

如图,在 Rt Δ ABC 中, ACB = 90 ° ,点 D AB 上,以 AD 为直径的 O 与边 BC 相切于点 E ,与边 AC 相交于点 G ,且 AG ̂ = EG ̂ ,连接 GO 并延长交 O 于点 F ,连接 BF

(1)求证:

AO = AG

BF O 的切线.

(2)若 BD = 6 ,求图形中阴影部分的面积.

来源:2019年辽宁省丹东市中考数学试卷
  • 题型:未知
  • 难度:未知

如图, BM 是以 AB 为直径的 O 的切线, B 为切点, BC 平分 ABM ,弦 CD AB 于点 E DE = OE

(1)求证: ΔACB 是等腰直角三角形;

(2)求证: O A 2 = OE · DC

(3)求 tan ACD 的值.

来源:2019年广西桂林市中考数学试卷
  • 题型:未知
  • 难度:未知

如图,四边形 ABCD中, ABADCD,以 AB为直径的⊙ O经过点 C,连接 ACOD交于点 E

(1)证明: ODBC

(2)若tan∠ ABC=2,证明: DA与⊙ O相切;

(3)在(2)条件下,连接 BD交⊙ O于点 F,连接 EF,若 BC=1,求 EF的长.

来源:2018年广东省中考数学试卷
  • 题型:未知
  • 难度:未知

初中数学圆的综合题解答题