如图1,点 是正方形 边 上任意一点,以 为边作正方形 ,连接 ,点 是线段 中点,射线 与 交于点 ,连接 .
(1)请直接写出 和 的数量关系和位置关系;
(2)把图1中的正方形 绕点 顺时针旋转 ,此时点 恰好落在线段 上,如图2,其他条件不变,(1)中的结论是否成立,请说明理由;
(3)把图1中的正方形 绕点 顺时针旋转 ,此时点 、 恰好分别落在线段 、 上,如图3,其他条件不变,(1)中的结论是否成立,请说明理由.
如图1,在矩形 中, 是 的中点,以点 为直角顶点的直角三角形 的两边 , 分别过点 , , .
(1)求证: ;
(2)将 绕点 按顺时针方向旋转,当旋转到 与 重合时停止转动,若 , 分别与 , 相交于点 , (如图 .
①求证: ;
②若 ,求 面积的最大值;
③当旋转停止时,点 恰好在 上(如图 ,求 的值.
如图 1 所示, 在四边形 中, 点 , , , 分别是 , , , 的中点, 连接 , , , , .
(1) 证明: 四边形 是平行四边形;
(2) 将 绕点 顺时针旋转得到 ,如图 2 所示, 连接 , .
①若 , ,求 的值;
②试在四边形 中添加一个条件, 使 , 的长在旋转过程中始终相等 . (不 要求证明)
如图,已知 中, ,把 绕 点沿顺时针方向旋转得到 ,连接 , 交于点 .
(1)求证: ;
(2)若 , ,当四边形 是菱形时,求 的长.
已知: 和 均为等腰直角三角形, .连接 , ,点 为 中点,连接 .
(1)如图1所示,易证: 且
(2)将 绕点 旋转到图2,图3所示位置时,线段 与 又有怎样的关系,并选择一个图形证明你的结论.
通过对下面数学模型的研究学习,解决问题.
【模型呈现】
如图,在 , ,将斜边 绕点 顺时针旋转 得到 ,过点 作 于点 ,可以推理得到 ,进而得到 , .
我们把这个数学模型称为“ 型”.
推理过程如下:
【模型应用】
如图,在 内接于 , , ,将斜边 绕点 顺时针旋转一定的角度得到 ,过点 作 于点 , , ,连接 交 于点 .
(1)求证: 是 的切线;
(2)连接 交 于点 ,连接 .求证: .
在 中, , 绕点 顺时针旋转到 的位置,点 在斜边 上,连接 ,过点 作 于点 .
(1)如图1,若点 与点 重合,求证: ;
(2)若 ,
①如图2,当点 在线段 的延长线上时,判断线段 与线段 的数量关系,并说明理由;
②当点 在线段 上时,设 ,请用含 的代数式表示线段 .
如图,在平面直角坐标系中,直角 的三个顶点分别是 , ,
(1)将 以点 为旋转中心旋转 ,画出旋转后对应的△ ;
(2)分别连接 、 后,求四边形 的面积.
如图①, 为等腰直角 的高,点 和点 分别在正方形 的边 和 上,连接 , .
(1)求证: ;
(2)将正方形 绕点 旋转,当线段 经过点 时,(如图②所示)
①求证: ;
②设 与 交于点 ,若 ,求 的值.
数学活动﹣旋转变换
(1)如图①,在△ABC中, ,将△ABC绕点C逆时针旋转50°得到△A′B′C,连接BB′,求∠A′B′B的大小;
(2)如图②,在△ABC中, , , ,将△ABC绕点C逆时针旋转60°得到△A′B′C,连接BB′,以A′为圆心,A′B′长为半径作圆.
(Ⅰ)猜想:直线BB′与⊙A′的位置关系,并证明你的结论;
(Ⅱ)连接A′B,求线段A′B的长度;
(3)如图③,在△ABC中, , , ,将△ABC绕点C逆时针旋转2β角度 得到△A′B′C,连接A′B和BB′,以A′为圆心,A′B′长为半径作圆,问:角α与角β满足什么条件时,直线BB′与⊙A′相切,请说明理由,并求此条件下线段A′B的长度(结果用角α或角β的三角函数及字母m、n所组成的式子表示)
如图,将等腰△ABC绕顶点B逆时针方向旋转α度到△A1BC1的位置,AB与A1C1相交于点D,AC与A1C1、BC1分别交于点E、F.
(1)求证: .
(2)当 度时,判定四边形A1BCE的形状并说明理由.
(1)【探究发现】
如图1,∠ EOF的顶点 O在正方形 ABCD两条对角线的交点处,∠ EOF=90°,将∠ EOF绕点 O旋转,旋转过程中,∠ EOF的两边分别与正方形 ABCD的边 BC和 CD交于点 E和点 F(点 F与点 C, D不重合).则 CE, CF, BC之间满足的数量关系是 .
(2)【类比应用】
如图2,若将(1)中的"正方形 ABCD"改为"∠ BCD=120°的菱形 ABCD",其他条件不变,当∠ EOF=60°时,上述结论是否仍然成立?若成立,请给出证明;若不成立,请猜想结论并说明理由.
(3)【拓展延伸】
如图3,∠ BOD=120°, OD= , OB=4, OA平分∠ BOD, AB= ,且 OB>2 OA,点 C是 OB上一点,∠ CAD=60°,求 OC的长.
如图,在矩形 ABCD中, AB=3, BC=4,将矩形 ABCD绕点 C按顺时针方向旋转α角,得到矩形 A' B' C' D', B' C与 AD交于点 E, AD的延长线与 A' D'交于点 F.
(1)如图①,当α=60°时,连接 DD',求 DD'和 A' F的长;
(2)如图②,当矩形 A' B' CD'的顶点 A'落在 CD的延长线上时,求 EF的长;
(3)如图③,当 AE= EF时,连接 AC, CF,求 AC• CF的值.
如图,在正方形ABCD中,点E(与点B、C不重合)是BC边上一点,将线段EA绕点E顺时针旋转90°到EF,过点F作BC的垂线交BC的延长线于点G,连接CF.
(1)求证:△ABE≌△EGF;
(2)若AB=2,S△ABE=2S△ECF,求BE.
试题篮
()