如图,在平面直角坐标系中,直线l与x轴相交于点M,与y轴相交于点N,Rt△MON的外心为点A(,-2),反比例函数y=(x>0)的图象过点A.
(1)求直线l的解析式;
(2)在函数y=(x>0)的图象上取异于点A的一点B,作BC⊥x轴于点C,连接OB交直线l于点P.若△ONP的面积是△OBC面积的3倍,求点P的坐标.
直线y=-x-1与反比例函数(x<0)的图象交于点A,与x轴相交于点B,过点B作x轴垂线交双曲线于点C,若AB=AC,则k的值为( )
A.-2 | B.-4 | C.-6 | D.-8 |
如图,矩形OABC的两边OA、OC分别在轴、轴的正半轴上,OA=4,OC=2,点G为矩形对角线的交点,经过点G的双曲线在第一象限的图象与BC相交于点M,则CM∶MB= .
如图,一次函数与反比例函数的图象交于A(1,m)、B(4,n)两点.
(1)求A、B两点的坐标和反比例函数的解析式;
(2)根据图象,直接写出当y>y时x的取值范围;
(3)求△AOB的面积.
在平面直角坐标系中,已知反比例函数y=的图象经过点A,点O是坐标原点,OA=2且OA与x轴的夹角是.
(1)试确定此反比例函数的解析式;
(2)将线段OA绕O点顺时针旋转30°得到线段OB,判断点B是否在此反比例函数的图象上,并说明理由.
小丽在"红色研学"活动中深受革命先烈事迹的鼓舞,用正方形纸片制作成图1的七巧板,设计拼成图2的"奔跑者"形象来激励自己.已知图1正方形纸片的边长为4,图2中 ,则"奔跑者"两脚之间的跨度,即 , 之间的距离是 .
如图,在 中, , , ,以点 为圆心,2为半径的圆与 交于点 ,过点 作 交 于点 ,点 是边 上的动点.当 最小时, 的长为
A. B. C.1D.
如图, 中, , , ,将 绕点 顺时针旋转 得到△ , 为线段 上的动点, 以点 为圆心, 长为半径作 ,当 与 的边相切时, 的半径为 .
如图,四边形 中, , , , , 为 的中点, 为线段 上的点,且 ,则点 到边 的距离是
A.3B. C.4D.
如图, 的面积为 .点 , , , , 是边 的 等分点 ,且 为整数),点 , 分别在边 , 上,且 ,连接 , , , , ,连接 , , , , ,线段 与 相交于点 ,线段 与 相交于点 ,线段 与 相交于点 , ,线段 与 相交于点 ,则△ ,△ ,△ , ,△ 的面积和是 .(用含有 与 的式子表示)
如图,正方形的边在正方形的边上,连接,过点作,交于点.连接,,其中交于点.
(1)求证:为等腰直角三角形.
(2)若,,求的长.
试题篮
()