优题课 - 聚名师,上好课(www.youtike.com)
  首页 / 试题库 / 初中数学试题 / 平行线分线段成比例
初中数学

已知反比例函数y= (k>0)的图象与一次函数y=-x+6相交与第一象限的A、B两点,如图所示,过A、B两点分别做x、y轴的垂线,线段AC、BD相交与P,给出以下结论:①OA=OB;②△OAM∽△OBN;③若△ABP的面积是8,则k=5;④P点一定在直线y=x上,其中正确命题的个数是( )个.

A.1   B.2     C.3    D.4

  • 题型:未知
  • 难度:未知

如图,Rt△OAB的顶点O与坐标原点重合,∠AOB=90°,AO=2BO,当A点在反比例函数(x>0)的图象上移动时,B点坐标满足的反比例函数解析式为

A. B.
C. D.
  • 题型:未知
  • 难度:未知

如图1,在平面直角坐标系中,O为坐标原点,直线y=-2x+5与x轴、y轴分别交于C、D两点,与双曲线y=(k≠0,x>0)交于A、B两点.
(1)若B点的横坐标为2,求k的值.
(2)设A点的横坐标为m,B点的横坐标为n,求m与n之间的函数关系式(不要求写出自变量的取值范围)
(3)如图2连结BO,取DO中点M,当以MO、BO、AD的长为三边构成的三角形的面积为时,在y=(k≠0,x>0)的图象上是否存在一点E,连接CE,BE,使得△BCE是以C为直角顶点的等腰直角三角形.若存在,求E点坐标,若不存在,请说明理由.

  • 题型:未知
  • 难度:未知

如图,在平面直角坐标系中,菱形ABOC的顶点O在坐标原点,边BO在x轴的负半轴上,∠BOC=60°,顶点C的坐标为(m,3),反比例函数的图像与菱形对角线AO交于D点,连接BD,当BD⊥x轴时,k的值是(    )   
 

A.6 B.-6 C.12 D.-12
  • 题型:未知
  • 难度:未知

如图,平面直角坐标系中, O 为原点,点 A B 分别在 y 轴、 x 轴的正半轴上. ΔAOB 的两条外角平分线交于点 P P 在反比例函数 y = 9 x 的图象上. PA 的延长线交 x 轴于点 C PB 的延长线交 y 轴于点 D ,连接 CD

(1)求 P 的度数及点 P 的坐标;

(2)求 ΔOCD 的面积;

(3) ΔAOB 的面积是否存在最大值?若存在,求出最大面积;若不存在,请说明理由.

来源:2019年江苏省徐州市中考数学试卷
  • 题型:未知
  • 难度:未知

(本小题满分10分)已知反比例函数的图象的一支位于第一象限.
(1)判断该函数图象的另一支所在的象限,并求的取值范围;
(2)如图8,O为坐标原点,点A在该反比例函数位于第一象限的图象上,点B与点A关于轴对称,若的面积为6,求的值.

  • 题型:未知
  • 难度:未知

近年来,我国煤矿安全事故频频发生,其中危害最大的是瓦斯,其主要成分是CO.在一次矿难事件的调查中发现:从零时起,井内空气中CO的浓度达到4mg/L,此后浓度呈直线型增加,在第7小时达到最高值46mg/L,发生爆炸;爆炸后,空气中的CO浓度成反比例下降.如图所示,根据题中相关信息回答

下列问题:
(1)求爆炸前后空气中CO浓度y与时间x的函数关系式,并写出相应的自变量取值范围;
(2)当空气中的CO浓度达到34mg/L时,井下3km的矿工接到自动报警信号,这时他们至少要以多少km/h的速度撤离才能在爆炸前逃生?
(3)矿工只有在空气中的CO浓度降到4mg/L及以下时,才能回到矿井开展生产自救,求矿工至少在爆炸后多少小时才能下井?

  • 题型:未知
  • 难度:未知

(本小题10分)平面直角坐标系中,点A在函数y1(x>0)的图象上,点B在y2=-(x<0)的图象上,设A的横坐标为a,B的横坐标为b:

(1)当|a|=|b|=5时,求△OAB的面积;
(2)当AB∥x轴时,求△OAB的面积;
(3)当△OAB是以AB为底边的等腰三角形,且AB与x轴不平行时,求a·b的值.

  • 题型:未知
  • 难度:未知

如图,点A是反比例函数 图像上的一点,过点A作AB⊥轴于点B,且△AOB的面积为2,点A的坐标为

(1)求m和k的值. 
(2)若一次函数y=ax+3的图像经过点A,交双曲线的另一支于点C,交y轴于点D,求△AOC的面积.
(3)在轴上是否存在点P,使得△PAC的面积为6?如果存在,请求出点P的坐标;若不存在,请说明理由.

  • 题型:未知
  • 难度:未知

问题:如图,在 ABCD 中, AB = 8 AD = 5 DAB ABC 的平分线 AE BF 分别与直线 CD 交于点 E F ,求 EF 的长.

答案: EF = 2

探究:(1)把"问题"中的条件" AB = 8 "去掉,其余条件不变.

①当点 E 与点 F 重合时,求 AB 的长;

②当点 E 与点 C 重合时,求 EF 的长.

(2)把"问题"中的条件" AB = 8 AD = 5 "去掉,其余条件不变,当点 C D E F 相邻两点间的距离相等时,求 AD AB 的值.

来源:2021年浙江省绍兴市中考数学试卷
  • 题型:未知
  • 难度:未知

如图,在矩形 ABCD 中, AB = 6 AD = 8 ,将此矩形折叠,使点 C 与点 A 重合,点 D 落在点 D ' 处,折痕为 EF ,则 AD ' 的长为    DD ' 的长为   

来源:2021年海南省中考数学试卷
  • 题型:未知
  • 难度:未知

如图, Rt Δ OAB 的直角边 OA x 轴上,顶点 B 的坐标为 ( 6 , 8 ) ,直线 CD AB 于点 D ( 6 , 3 ) ,交 x 轴于点 C ( 12 , 0 )

(1)求直线 CD 的函数表达式;

(2)动点 P x 轴上从点 ( 10 , 0 ) 出发,以每秒1个单位的速度向 x 轴正方向运动,过点 P 作直线 l 垂直于 x 轴,设运动时间为 t

①点 P 在运动过程中,是否存在某个位置,使得 PDA = B ,若存在,请求出点 P 的坐标;若不存在,请说明理由;

②请探索当 t 为何值时,在直线 l 上存在点 M ,在直线 CD 上存在点 Q ,使得以 OB 为一边, O B M Q 为顶点的四边形为菱形,并求出此时 t 的值.

来源:2018年浙江省衢州市中考数学试卷
  • 题型:未知
  • 难度:未知

如图,边长为1的正方形ABCD中,点E在CB延长线上,连接ED交AB于点F,AF=,EC=.则在下面函数图象中,大致能反应之间函数关系的是

  • 题型:未知
  • 难度:未知

如图,在平面直角坐标系中,直线l与x轴相交于点M,与y轴相交于点N,Rt△MON的外心为点A(,-2),反比例函数y=(x>0)的图象过点A.

(1)求直线l的解析式;
(2)在函数y=(x>0)的图象上取异于点A的一点B,作BC⊥x轴于点C,连接OB交直线l于点P.若△ONP的面积是△OBC面积的3倍,求点P的坐标.

  • 题型:未知
  • 难度:未知

如图,在函数(x>0)的图象上,有点,…,,若的横坐标为a,且以后每点的横坐标与它前面一个点的横坐标的差都为2,过点,…,分别作x轴、y轴的垂线段,构成若干个矩形如图所示,将图中阴影部分的面积从左到右依次记为,…,,则=      +++…+=          .(用n的代数式表示)

  • 题型:未知
  • 难度:未知

初中数学平行线分线段成比例试题