已知反比例函数y= (k>0)的图象与一次函数y=-x+6相交与第一象限的A、B两点,如图所示,过A、B两点分别做x、y轴的垂线,线段AC、BD相交与P,给出以下结论:①OA=OB;②△OAM∽△OBN;③若△ABP的面积是8,则k=5;④P点一定在直线y=x上,其中正确命题的个数是( )个.
A.1 B.2 C.3 D.4
如图,Rt△OAB的顶点O与坐标原点重合,∠AOB=90°,AO=2BO,当A点在反比例函数(x>0)的图象上移动时,B点坐标满足的反比例函数解析式为
A. | B. |
C. | D. |
如图1,在平面直角坐标系中,O为坐标原点,直线y=-2x+5与x轴、y轴分别交于C、D两点,与双曲线y=(k≠0,x>0)交于A、B两点.
(1)若B点的横坐标为2,求k的值.
(2)设A点的横坐标为m,B点的横坐标为n,求m与n之间的函数关系式(不要求写出自变量的取值范围)
(3)如图2连结BO,取DO中点M,当以MO、BO、AD的长为三边构成的三角形的面积为时,在y=(k≠0,x>0)的图象上是否存在一点E,连接CE,BE,使得△BCE是以C为直角顶点的等腰直角三角形.若存在,求E点坐标,若不存在,请说明理由.
如图,在平面直角坐标系中,菱形ABOC的顶点O在坐标原点,边BO在x轴的负半轴上,∠BOC=60°,顶点C的坐标为(m,3),反比例函数的图像与菱形对角线AO交于D点,连接BD,当BD⊥x轴时,k的值是( )
A.6 | B.-6 | C.12 | D.-12 |
如图,平面直角坐标系中, 为原点,点 、 分别在 轴、 轴的正半轴上. 的两条外角平分线交于点 , 在反比例函数 的图象上. 的延长线交 轴于点 , 的延长线交 轴于点 ,连接 .
(1)求 的度数及点 的坐标;
(2)求 的面积;
(3) 的面积是否存在最大值?若存在,求出最大面积;若不存在,请说明理由.
(本小题满分10分)已知反比例函数的图象的一支位于第一象限.
(1)判断该函数图象的另一支所在的象限,并求的取值范围;
(2)如图8,O为坐标原点,点A在该反比例函数位于第一象限的图象上,点B与点A关于轴对称,若的面积为6,求的值.
近年来,我国煤矿安全事故频频发生,其中危害最大的是瓦斯,其主要成分是CO.在一次矿难事件的调查中发现:从零时起,井内空气中CO的浓度达到4mg/L,此后浓度呈直线型增加,在第7小时达到最高值46mg/L,发生爆炸;爆炸后,空气中的CO浓度成反比例下降.如图所示,根据题中相关信息回答
下列问题:
(1)求爆炸前后空气中CO浓度y与时间x的函数关系式,并写出相应的自变量取值范围;
(2)当空气中的CO浓度达到34mg/L时,井下3km的矿工接到自动报警信号,这时他们至少要以多少km/h的速度撤离才能在爆炸前逃生?
(3)矿工只有在空气中的CO浓度降到4mg/L及以下时,才能回到矿井开展生产自救,求矿工至少在爆炸后多少小时才能下井?
(本小题10分)平面直角坐标系中,点A在函数y1=(x>0)的图象上,点B在y2=-(x<0)的图象上,设A的横坐标为a,B的横坐标为b:
(1)当|a|=|b|=5时,求△OAB的面积;
(2)当AB∥x轴时,求△OAB的面积;
(3)当△OAB是以AB为底边的等腰三角形,且AB与x轴不平行时,求a·b的值.
如图,点A是反比例函数 图像上的一点,过点A作AB⊥轴于点B,且△AOB的面积为2,点A的坐标为.
(1)求m和k的值.
(2)若一次函数y=ax+3的图像经过点A,交双曲线的另一支于点C,交y轴于点D,求△AOC的面积.
(3)在轴上是否存在点P,使得△PAC的面积为6?如果存在,请求出点P的坐标;若不存在,请说明理由.
问题:如图,在 中, , , , 的平分线 , 分别与直线 交于点 , ,求 的长.
答案: .
探究:(1)把"问题"中的条件" "去掉,其余条件不变.
①当点 与点 重合时,求 的长;
②当点 与点 重合时,求 的长.
(2)把"问题"中的条件" , "去掉,其余条件不变,当点 , , , 相邻两点间的距离相等时,求 的值.
如图,在矩形 中, , ,将此矩形折叠,使点 与点 重合,点 落在点 处,折痕为 ,则 的长为 , 的长为 .
如图, 的直角边 在 轴上,顶点 的坐标为 ,直线 交 于点 ,交 轴于点 .
(1)求直线 的函数表达式;
(2)动点 在 轴上从点 出发,以每秒1个单位的速度向 轴正方向运动,过点 作直线 垂直于 轴,设运动时间为 .
①点 在运动过程中,是否存在某个位置,使得 ,若存在,请求出点 的坐标;若不存在,请说明理由;
②请探索当 为何值时,在直线 上存在点 ,在直线 上存在点 ,使得以 为一边, , , , 为顶点的四边形为菱形,并求出此时 的值.
如图,在平面直角坐标系中,直线l与x轴相交于点M,与y轴相交于点N,Rt△MON的外心为点A(,-2),反比例函数y=(x>0)的图象过点A.
(1)求直线l的解析式;
(2)在函数y=(x>0)的图象上取异于点A的一点B,作BC⊥x轴于点C,连接OB交直线l于点P.若△ONP的面积是△OBC面积的3倍,求点P的坐标.
如图,在函数(x>0)的图象上,有点,,,…,,,若的横坐标为a,且以后每点的横坐标与它前面一个点的横坐标的差都为2,过点,,,…,,分别作x轴、y轴的垂线段,构成若干个矩形如图所示,将图中阴影部分的面积从左到右依次记为,,,…,,则= , +++…+= .(用n的代数式表示)
试题篮
()