如图,Rt△OAB的顶点O与坐标原点重合,∠AOB=90°,AO=2BO,当A点在反比例函数(x>0)的图象上移动时,B点坐标满足的反比例函数解析式为
A.![]() |
B.![]() |
C.![]() |
D.![]() |
如图,在平面直角坐标系中,菱形ABOC的顶点O在坐标原点,边BO在x轴的负半轴上,∠BOC=60°,顶点C的坐标为(m,3),反比例函数
的图像与菱形对角线AO交于D点,连接BD,当BD⊥x轴时,k的值是( )
A.6![]() |
B.-6![]() |
C.12![]() |
D.-12![]() |
如图,在平面直角坐标系中,直线y=﹣3x+3与x轴、y轴分别交于A、B两点,以AB为边在第一象限作正方形ABCD,点D在双曲线(k≠0)上.将正方形沿x轴负方向平移a个单位长度后,点C恰好落在该双曲线上,则a的值是( )
A.1 B.2 C.3 D.4
如图,函数y=-kx(k与
的图象交于A、B两点,过A作AC
轴于C,则
BOC的面积是( ).
A.8 B .4 C. 2 D.1
已知反比例函数y= (k>0)的图象与一次函数y=-x+6相交与第一象限的A、B两点,如图所示,过A、B两点分别做x、y轴的垂线,线段AC、BD相交与P,给出以下结论:①OA=OB;②△OAM∽△OBN;③若△ABP的面积是8,则k=5;④P点一定在直线y=x上,其中正确命题的个数是( )个.
A.1 B.2 C.3 D.4
如图所示,已知A( ,
),B(2,
)为反比例函数
图象上的两点,动点P(x,0)在x轴正半轴上运动,当线段AP与线段BP之差达到最大时,点P的坐标是( )
A.( ![]() |
B.(1,0) | C.(![]() |
D.(![]() |
如图,OABC是平行四边形,对角线OB在y轴正半轴上,位于第一象限的点A和第二象限的点C分别在双曲线y=和y=
的一支上,分别过点A、C作x轴的垂线,垂足分别为M和N,则有以下的结论:①
=
; ②阴影部分面积是
(k1+k2);③当∠AOC=90°时,|k1|=|k2|;④若OABC是菱形,则两双曲线既关于x轴对称,也关于y轴对称.其中正确的结论是( )
A.①②③ B.②④ C.①③④ D.①④
已知n是正整数,(
,
)是反比例函数
图象上的一列点,其中
,
,…,
=n; 记
,
,…,
;若
,则
的值是( )
A.0.1×218 | B.0.1×219 |
C.0.1×220 | D.0.1×221 |
如图,每个底边为2的等腰三角形顶角的顶点都在反比例函数(x>0)的图像上,第1个等腰三角形顶角的顶点横坐标为1,第2个等腰三角形的顶点横坐标为3,……以此类推,用含n的式子表示第n个等腰三角形底边上的高为( )
A.![]() |
B.![]() |
C.![]() |
D.![]() |
(11·湖州)如图,已知A、B是反比例函数(k>0,x<0)图象上的两
点,BC∥x轴,交y轴于点C。动点P从坐标原点O出发,沿O→A→B→C(图中“→”
所示路线)匀速运动,终点为C。过P作PM⊥x轴,PN⊥y轴,垂足分别为M、N。设四
边形OMPN的面积为S,P点运动时间为t,则S关于t的函数图象大致为
.根据图5中①所示的程序,得到了y与x的函数图象,如图5中②,若点M是
y轴正半轴上任意一点,过点M作PQ∥x轴交图象于点P、Q,连接OP、OQ,则以下结论:
①x<0时,y=
②△OPQ的面积为定值
③x>0时,y随x的增大而增大
④MQ=2PM
⑤∠POQ可以等于90°
其中正确结论是
A.①②④ B.②④⑤ C.③④⑤ D.②③⑤
已知点(1,1)在反比例函数y=(k为常数,k≠0)的图象上,则这个反比例函数的大致图象是
A B C D
试题篮
()