已知正比例函数y=x和反比例函数的图象都经过点A(3,3).
(1)直接写出反比例函数的解析式;
(2)把直线OA向下平移后与反比例函数的图象交于点B(6,m),求平移的距离.
甲、乙两家超市进行促销活动,甲超市采用“买100减50”的促销方式,即购买商品的总金额满100元但不足200元,少付50元;满200元但不足300元,少付100元;….乙超市采用“打6折”的促销方式,即顾客购买商品的总金额打6折.
(1)若顾客在甲商场购买商品的总金额为x(100≤x<200)元,优惠后得到商家的优惠率为p(p=),写出p与x之间的函数关系式,并说明p随x的变化情况;
(2)王强同学认为:如果顾客购买商品的总金额超过100元,实际上甲超市采用“打5折”、乙超市采用“打6折”,那么当然选择甲超市购物.请你举例反驳;
(3)品牌、质量、规格等都相同的某种商品,在甲乙两商场的标价都是x(300≤x<400)元,认为选择哪家商场购买商品花钱较少?请说明理由.
如图,直线y=x与双曲线y=(k>0,x>0)交于点A,将直线y=x向上平移4个单位长度后,与y轴交于点C,与双曲线y=(k>0,x>0)交于点B.
(1)设点B的横坐标分别为b,试用只含有字母b的代数式表示k;
(2)若OA=3BC,求k的值.
已知反比例函数y1=的图象与一次函数y2=ax+b的图象交于点A(1,4)和点B(m,﹣2),
(1)求这两个函数的关系式;
(2)观察图象,写出使得y1>y2成立的自变量x的取值范围;
(3)若P为Y轴上得一点,连接PA、PB,△PAB的面积为6,求P点的坐标。
如图,点A(m,6)、B(n,1)在反比例函数图象上,AD⊥x轴于点D,BC⊥x轴于点C,DC=5.
(1)求m、n的值并写出该反比例函数的解析式.
(2)点E在线段CD上,S△ABE=10,求点E的坐标.
如图,一次函数的图象与x轴交于点B,与反比例函数的图象的交点为A(﹣2,3).
(1)求反比例函数的解析式;
(2)过点A作AC⊥x轴,垂足为C,若点P在反比例函数图象上,且△PBC的面积等于18,求P点的坐标.
如图,点M(﹣3,m)是一次函数与反比例函数()的图象的一个交点.
(1)求反比例函数表达式;
(2)点P是x轴正半轴上的一个动点,设OP=a(a≠2),过点P作垂直于x轴的直线,分别交一次函数,反比例函数的图象于点A,B,过OP的中点Q作x轴的垂线,交反比例函数的图象于点C,△ABC′与△ABC关于直线AB对称.
①当a=4时,求△ABC′的面积;
②当a的值为 时,△AMC与△AMC′的面积相等.
如图,反比例函数y=(k<0)的图象与矩形ABCD的边相交于E、F两点,且BE=2AE,E(﹣1,2).
(1)求反比例函数的解析式;
(2)连接EF,求△BEF的面积.
定义运算max{a,b}:当a≥b时,max{a,b}=a;当a<b时,max{a,b}=b.如max{﹣3,2}=2.
(1)max{,3}= ;
(2)已知和在同一坐标系中的图象如图所示,若max{,}=,结合图象,直接写出x的取值范围;
(3)用分类讨论的方法,求max{2x+1,x﹣2}的值.
(本题12分)如图,点B(2,2)在双曲线(x>0)上,点C在双曲线(x<0)上,点A是x轴上一动点,连接BC、AC、AB.
(1)求k的值;
(2)如图1,当BC∥x轴时,△ABC的面积;
(3)如图2,当点A运动到x轴正半轴时,若△ABC是等腰直角三角形,∠BAC=90°,求点A的坐标.
如图,反比例函数的图象经过点(-1,),点A是该图象第一象限分支上的动点,连结AO并延长交另一支于点B,以AB为斜边作等腰直角三角形ABC,顶点C在第四象限,AC与轴交于点P,连结BP.
(1)的值为
(2)在点A运动过程中,当BP平分∠ABC时,点C的坐标是
(本题10分)已知如图:点(1,3)在函数(x>0)的图象上,矩形ABCD的边BC在x轴上,E是对角线BD的中点,函数(x>0)的图象又经过A、E两点,点E的横坐标为m.
(1)求k的值;
(2)求点A的坐标;(用含m代数式表示)
(3)当∠ABD=45°时,求m的值.
如图,在平面直角坐标系中,已知点,反比例函数的图像经过点A,动直线与反比例函数的图像交于点M,与直线AB交于点N.
(1)求k的值;
(2)求△BMN面积的最大值;
(3)若,求t的值.
已知:一次函数的图象与反比例函数()的图象相交于A,B两点(A在B的右侧).
(1)当A(4,2)时,求反比例函数的解析式及B点的坐标;
(2)在(1)的条件下,反比例函数图象的另一支上是否存在一点P,使△PAB是以AB为直角边的直角三角形?若存在,求出所有符合条件的点P的坐标;若不存在,请说明理由.
(3)当A(a,﹣2a+10),B(b,﹣2b+10)时,直线OA与此反比例函数图象的另一支交于另一点C,连接BC交y轴于点D.若,求△ABC的面积.
平面直角坐标系中,点的横坐标的绝对值表示为,纵[坐标的绝对值表示为,我们把点的横坐标与纵坐标的绝对值之和叫做点的勾股值,记为:「」,即「」=+,(其中的“+”是四则运算中的加法)
(1)求点,的勾股值「」、「」
(2)点在反比例函数的图像上,且「」=4,求点的坐标;
(3)求满足条件「」=3的所有点围成的图形的面积
试题篮
()