如图,直线y=k1x+b与双曲线y=相交于A(1,2)、B(m,﹣1)两点.
(1)求直线和双曲线的解析式;
(2)若A1(x1,y1),A2(x2,y2),A3(x3,y3)为双曲线上的三点,且x1<x2<0<x3,请直接写出y1,y2,y3的大小关系式;
(3)观察图象,请直接写出不等式k1x+b>的解集.
如图一次函数的图象与反比例函数的图象交于点A,B(3,a).
(1)求、的值;
(2)直接写出一次函数的值大于反比例函数的值时x的取值范围:
;
(3)如图,等腰梯形OBCD中,BC//OD,OB=CD,OD边在x 轴上,过点C作CE⊥OD于点E,CE和反比例函数的图象 交于点P,当点P为CE的中点时,求梯形OBCD的面积.
如图正方形的面积为4,点为坐标原点,点在函数(,)的图象上,点是函数的图象上异于的任意一点,过点分别作轴,轴的垂线,垂足分别为.
(1)设矩形的面积为,判断与点的位置是否有关(不必说理由).
(2)从矩形的面积中减去其与正方形重合的面积,剩余面积记为,写出与的函数关系,并标明的取值范围.
如图,已知是一次函数的图象和反比例函数的图象的两个交点,直线AB与x轴的交点为C。
(1)求反比例函数和一次函数的解析式;
(2)求的面积;
(3)若点D与点O、B、C能构成平行四边形,试写出点D坐标(只需写出坐标,不必写解答过程)
阅读理解:对于任意正实数a、b,∵≥0, ∴≥0,
∴≥,只有当a=b时,等号成立.
结论:在≥(a、b均为正实数)中,若ab为定值p,则a+b≥,只有当a=b时,a+b有最小值.
根据上述内容,回答下列问题:
若m>0,只有当m= 时, .
思考验证:如图1,AB为半圆O的直径,C为半圆上任意一点(与点A、B不重合),过点C作CD⊥AB,垂足为D,AD=a,DB=b.
试根据图形验证≥,并指出等号成立时的条件.
探索应用:如图2,已知A(-3,0),B(0,-4),P为双曲线(x>0)上的任意一点,过点P作PC⊥x轴于点C,PD⊥y轴于点D.求四边形ABCD面积的最小值,并说明此时四边形ABCD的形状.
如图,已知反比例函数的图象与一次函数的图象交于、两点,.
(1)求反比例函数和一次函数的关系式;
(2)在直线上是否存在一点,使∽,若存在,求点坐标;若不存在,请说明理由.
已知双曲线与直线相交于A、B两点.第一象限上的点M(m,n)(在A点左侧)是双曲线上的动点.过点B作BD∥y轴交x轴于点D.过N(0,-n)作NC∥x轴交双曲线于点E,交BD于点C.
(1)若点D坐标是(-8,0),求A、B两点坐标及k的值.
(2)若B是CD的中点,四边形OBCE的面积为4,求直线CM的解析式.
(3)设直线AM、BM分别与y轴相交于P、Q两点,且MA=pMP,MB=qMQ,求p-q的值.
已知与是反比例函数图象上的两个点.
(1)求的值;
(2)若点,则在反比例函数图象上是否存在点,使得以四点为顶点的四边形为梯形?若存在,求出点的坐标;若不存在,请说明理由.
如图,一次函数的图象与反比例函数的图象交于两点,直线分别交轴、轴于两点.
(1)求上述反比例函数和一次函数的解析式;
(2)求的值.
如图,点P的坐标为(2,),过点P作x轴的平行线交y轴于点A,交双曲线(x>0)于点N;作PM⊥AN交双曲线(x>0)于点M,连结AM.已知PN=4.
(1)求k的值.
(2)求△APM的面积.
如图,在平面直角坐标系中,点是反比例函数图象上一点,⊥轴于点,一次函数的图象交轴于,交轴于点,并与反比例函数的图象交于两点,连接若△的面积为4,且.
(1) 分别求出该反比例函数和一次函数的解析式;
(2) 求△的面积.
已知:如图,正比例函数的图象与反比例函数的图象交于点
(1)试确定上述正比例函数和反比例函数的表达式;
(2)根据图象回答,在第一象限内,当取何值时,反比例函数的值大于正比例函数的值?
(3)是反比例函数图象上的一动点,其中过点作直线 轴,交轴于点;过点作直线轴交轴于点,交直线于点.当四边形的面积为6时,请判断线段与的大小关系,并说明理由.
试题篮
()