如图所示,在平面直角坐标系中,一次函数y=kx+1,的图像与反比例函数的图像在第一象限相交于点A,过点A分别作x 轴、y轴的垂线,垂足为点B、C.如果四边形OBAC是正方形,求一次函数的关系式.
如图,反比例函数y=(m≠0)与一次函数y=kx+b(k≠0)的图象相交于A、B两点,点A的坐标为(-6,2),点B的坐标为(3,n).求反比例函数和一次函数的解析式.
如图,已知点A(-4,2)、B( n,-4)是一次函数的图象与反比例函数图象的两个交点.
(1) 求此一次函数的解析式和点B的坐标;
(2) 根据图象写出使一次函数的值小于反比例函数值的x的取值范围.
如图,一次函数y=kx+b与反比例函数的图象交于A(m,6),B(n,3)两点.
(1)求一次函数的解析式;
(2)根据图象直接写出时x的取值范围.
如图,直线l1:与双曲线相交于点A(a,2),将直线l1向上平移3个单位得到l2,直线l2与双曲线相交于B.C两点(点B在第一象限),交y轴于D点.
(1)求双曲线的解析式;
(2)求tan∠DOB的值.
如图,定义:若双曲线 (k>0)与它的其中一条对称轴y=x相交于A、B两点,则线段AB的长度为双曲线 (k>0)的对径.
(1)求双曲线的对径.
(2)若双曲线 (k>0)的对径是,求k的值.
(3)仿照上述定义,定义双曲线 (k<0)的对径.
你吃过拉面吗?实际上在做拉面的过程中就渗透着数学知识:一定体积的面团做成拉面,面条的总长度y(m)是面条的粗细(横截面积) s (mm2)的反比例函数,其图像如图所示。
(1)写出y与s的函数关系式;
(2)求当面条粗1.6mm2时,面条的总长度是多少米?
如图,己知双曲线y=(x>0)与经过点A(1,0)、B(0,1)的直线交于P、Q两点,连结OP、OQ.
(1)求△OPQ的面积.
(2)试说明:△OAQ≌△OBP
(3)若C是OA上不与O、A重合的任意一点,CA=a(0<a<1),CD⊥AB于D,DE⊥OB于E.
①a为何值时,CE=AC?
②线段OA上是否存在点C,使CE∥AB?若存在这样的点,请求出点C的坐标:若不存在,请说明理由.
如图,平面直角坐标系中,直线AB分别与轴交于点B、A,与反比例函数的图象分别交于点C、D,CE⊥轴于点E,点C坐标是(-2,3),点D的坐标是(6,n).
(1)求一次函数和反比例函数的表达式;
(2)求△DCE的面积.
如图,已知反比例函数与一次函数的图象在第一象限相交于点.
(1)试确定这两个函数的表达式;
(2)连接OA、OB,求△AOB的面积.
如图,一次函数y=kx+b与反比例函数y=的图象交于A(2,3),B(-3,n)两点.
(1)求一次函数与反比例函数的解析式;
(2)根据所给条件,请直接写出不等式kx+b>的解集;
(3)过点B作BC⊥x轴,垂足为C,求S△ABC.
反比例函数的图象如图所示,,是该图象上的两点。
(1)比较与的大小;
(2)求的取值范围。
如图,正比例函数的图象与反比例函数在第一象限的图象交于点,过点作轴的垂线,垂足为,已知的面积为1.(1)求反比例函数的解析式;(2)如果为反比例函数在第一象限图象上的点(点与点不重合),且点的横坐标为1,在轴上求一点,使最小.
试题篮
()