优题课 - 聚名师,上好课(www.youtike.com)
  首页 / 试题库 / 初中数学试题 / 平行线分线段成比例 / 解答题
初中数学

如图,已知抛物线经过O(0,0),A(4,0),B(3,)三点,连接AB,过点B作BC∥轴交该抛物线于点C.

求这条抛物线的函数关系式.
两个动点P、Q分别从O、A同时出发,以每秒1个单位长度的速度运动. 其中,点P沿着线段0A向A点运动,点Q沿着线段AB向B点运动. 设这两个动点运动的时间为(秒) (0<≤2),△PQA的面积记为S.
① 求S与的函数关系式;
② 当为何值时,S有最大值,最大值是多少?并指出此时△PQA的形状;
是否存在这样的值,使得△PQA是直角三角形?若存在,请直接写出此时P、Q两点的坐标;若不存在,请说明理由.

来源:
  • 题型:未知
  • 难度:未知

(10’)设xi(i=1,2,3, ,n)为任意代数式,我们规定:y=max{x1,x2,x3,…,xn}表示x1,x2,…,xn中的最大值,如y=max{1,2}=2.
(1)求y=max{x,3};
(2)借助函数图象,解决以下问题:
①解不等式 max{x+1,}≥2;
②若函数y=max{|x﹣1|,x+a,x2﹣4x+3}的最小值为1,求实数a的值.

  • 题型:未知
  • 难度:未知

(11·贺州)
如图,在平面直角坐标系中,点O为原点,反比例函数的图象经过点(1,4),菱
形OABC的顶点A在函数的图象上,对角线OB在x轴上.
(1)求反比例函数的关系式;
(2)直接写出菱形OABC的面积.

  • 题型:未知
  • 难度:未知

如图,在直角坐标系中,矩形OABC的顶点O与坐标原点重合,A,C分别在坐标轴上,点B的坐标为(4,2),直线交AB,BC于点M,N,反比例函数的图象经过点M,N.

(1)求反比例函数的解析式;
(2)若点P在x轴上,且△OPM的面积与四边形BMON的面积相等,求点P的坐标.

  • 题型:未知
  • 难度:未知

如图,一次函数y=k1x+b的图象经过A(0,﹣2),B(1,0)两点,与反比例函数的图象在第一象限内的交点为M,若△OBM的面积为2.
(1)求一次函数和反比例函数的表达式;
(2)在x轴上是否存在点P,使AM⊥MP?若存在,求出点P的坐标;若不存在,说明理由.

  • 题型:未知
  • 难度:未知

如图,一次函数y=ax+b与反比例函数y=的图象交于A、B两点,点A坐标为(m,2),点B坐标为(﹣4,n),OA与x轴正半轴夹角的正切值为,直线AB交y轴于点C,过C作y轴的垂线,交反比例函数图象于点D,连接OD、BD.
 
(1)求一次函数与反比例函数的解析式;
(2)求四边形OCBD的面积.

  • 题型:未知
  • 难度:未知

给出下列命题:
命题1:直线与双曲线有一个交点是(1,1);
命题2:直线与双曲线有一个交点是(,4);
命题3:直线与双曲线有一个交点是(,9);
命题4:直线与双曲线有一个交点是(,16);
……………………………………………………
(1)请你阅读、观察上面命题,猜想出命题为正整数);
(2)请验证你猜想的命题是真命题.

  • 题型:未知
  • 难度:未知

如图,在平面直角坐标系xOy中,△ABC的边AC在x轴上,边BC⊥x轴,双曲线y=与边BC交于点D(4,m),与边AB交于点E(2,n).

(1)求n关于m的函数关系式;
(2)若BD=2,tan∠BAC=,求k的值和点B的坐标.

  • 题型:未知
  • 难度:未知

问题:如图,在 ABCD 中, AB = 8 AD = 5 DAB ABC 的平分线 AE BF 分别与直线 CD 交于点 E F ,求 EF 的长.

答案: EF = 2

探究:(1)把"问题"中的条件" AB = 8 "去掉,其余条件不变.

①当点 E 与点 F 重合时,求 AB 的长;

②当点 E 与点 C 重合时,求 EF 的长.

(2)把"问题"中的条件" AB = 8 AD = 5 "去掉,其余条件不变,当点 C D E F 相邻两点间的距离相等时,求 AD AB 的值.

来源:2021年浙江省绍兴市中考数学试卷
  • 题型:未知
  • 难度:未知

已知:如图,在菱形 ABCD 中,点 E F 分别在边 BC CD 上, BE = FD AF 的延长线交 BC 的延长线于点 H AE 的延长线交 DC 的延长线于点 G

[小题1]求证: ΔAFD ΔGAD

[小题2]如果 D F 2 = CF · CD ,求证: BE = CH

来源:2020年上海市中考数学试卷
  • 题型:未知
  • 难度:未知

如图,已知 MON = 90 ° OT MON 的平分线, A 是射线 OM 上一点, OA = 8 cm .动点 P 从点 A 出发,以 1 cm / s 的速度沿 AO 水平向左作匀速运动,与此同时,动点 Q 从点 O 出发,也以 1 cm / s 的速度沿 ON 竖直向上作匀速运动.连接 PQ ,交 OT 于点 B .经过 O P Q 三点作圆,交 OT 于点 C ,连接 PC QC .设运动时间为 t ( s ) ,其中 0 < t < 8

(1)求 OP + OQ 的值;

(2)是否存在实数 t ,使得线段 OB 的长度最大?若存在,求出 t 的值;若不存在,说明理由.

(3)求四边形 OPCQ 的面积.

来源:2020年江苏省苏州市中考数学试卷
  • 题型:未知
  • 难度:未知

已知一次函数y=2x-k与反比例函数的图像相交于A和B两点.,如果有一个交点A的横坐标为3,

(1)求k的值;
(2)求A、B两点的坐标;
(3)根据图象写出一次函数的值大于反比例函数的值的的取值范围
(4)求△AOB的面积;

  • 题型:未知
  • 难度:未知

如图,在直角坐标系中,矩形OABC的顶点O与坐标原点重合,顶点A,C分别在坐标轴上,顶点B的坐标(4,2),过点D(0,3)和E(6,0)的直线分别于AB,BC交于点M,N.

(1)求直线DE的解析式和点M的坐标;
(2)若反比例函数(x>0)的图象经过点M,求该反比函数的解析式,并通过计算判断点N是否在该函数的图象上.

  • 题型:未知
  • 难度:未知

如图,已知反比例函数的图象经过点(,8),直线经过该反比例函数图象上的点Q(4,).

(1)求上述反比例函数和直线的函数表达式;
(2)设该直线与轴、轴分别相交于A 、B两点,与反比例函数图象的另一个交点为P,连结0P、OQ,求△OPQ的面积.

  • 题型:未知
  • 难度:未知

如图,RtABO的顶点A是双曲线与直线在第二象限的交点,AB⊥轴于B且SABO=

求这两个函数的解析式
求直线与双曲线的两个交点A,C的坐标和△AOC的面积。

  • 题型:未知
  • 难度:未知

初中数学平行线分线段成比例解答题