如图,点B(3,3)在双曲线y=(x>0)上,点D在双曲线y=﹣(x<0)上,点A和点C分别在x轴、y轴的正半轴上,且点A、B、C构成的四边形为正方形.
(1)求k的值;
(2)求点A的坐标.
已知边长为4的正方形ABCD,顶点A与坐标原点重合,一反比例函数图象过顶点C,动点P以每秒1个单位速度从点A出发沿AB方向运动,动点Q同时以每秒4个单位速度从D点出发沿正方形的边DC﹣CB﹣BA方向顺时针折线运动,当点P与点Q相遇时停止运动,设点P的运动时间为t.
(1)求出该反比例函数解析式;
(2)连接PD,当以点Q和正方形的某两个顶点组成的三角形和△PAD全等时,求点Q的坐标;
(3)用含t的代数式表示以点Q、P、D为顶点的三角形的面积s,并指出相应t的取值.
如图,已知反比例函数y1=和一次函数y2=ax+1的图象相交于第一象限内的点A,且点A的横坐标为1.过点A作AB⊥x轴于点B,△AOB的面积为1.
(1)求反比例函数和一次函数的解析式;
(2)若一次函数y2=ax+1的图象与x轴相交于点C,求∠ACO的度数;
(3)结合图象直接写出:当y1>y2>0时,x的取值范围.
如图,已知A(-4,0.5),B(-1,2)是一次函数y=ax+b与反比例函数(m<0)图象的两个交点,AC⊥x轴于C,BD⊥y轴于D.
(1)根据图象直接回答:在第二象限内,当x取何值时,一次函数大于反比例函数的值?
(2)求一次函数解析式及m的值;
(3)P是线段AB上的一点,连接PC,PD,若△PCA和△PDB面积相等,求点P坐标.
如图,已知反比例函数y=(x>0,k是常数)的图象经过点A(1,4),点B(m,n),其中m>1,AM⊥x轴,垂足为M,BN⊥y轴,垂足为N,AM与BN的交点为C.
(1)写出反比例函数解析式;
(2)求证:△ACB∽△NOM;
(3)若△ACB与△NOM的相似比为2,求出B点的坐标及AB所在直线的解析式.
如图,在平面直角坐标系xOy中,矩形OABC的顶点A在x轴上,顶点C在y轴上,D是BC的中点,过点D的反比例函数图象交AB于E点,连接DE.若OD=5,tan∠COD=.
(1)求过点D的反比例函数的解析式;
(2)求△DBE的面积;
(3)x轴上是否存在点P使△OPD为直角三角形?若存在,请直接写出P点的坐标;若不存在,请说明理由.
如图,一次函数y=kx+b与反比例函数(x>0)的图象交于A(m,6),B(3,n)两点.
(1)求一次函数的解析式;
(2)根据图象直接写出的x的取值范围;
(3)求△AOB的面积.
如图,已知正比例函数y=x与反比例函数y=(k>0)的图象交于A、B两点,且点A的横坐标为4.
(1)求k的值;
(2)根据图象直接写出正比例函数值小于反比例函数值时x的取值范围;
(3)过原点O的另一条直线l交双曲线y=(k>0)于P、Q两点(P点在第一象限),若由点A、P、B、Q为顶点组成的四边形面积为24,求点P的坐标.
如图所示,直线AB与x轴交于点A,与y轴交于点C(0,2),且与反比例函数y=-的图象在第二象限内交于点B,过点B作BD⊥x轴于点D,OD=2.
(1)求直线AB的解析式;
(2)若点P是线段BD上一点,且△PBC的面积等于3,求点P的坐标.
如图,A(4,0),B(1,3),以OA、OB为边作平行四边形OACB,反比例函数y=的图象经过点C.
(1)求k的值;
(2)根据图象,直接写出y<3时自变量x的取值范围;
(3)将平行四边形OACB向上平移几个单位长度,使点B落在反比例函数的图象上.
如图,等边△ABC放置在平面直角坐标系中,已知A(0,0)、B(2,0),反比例函数的图象经过点C.
(1)求点C的坐标及反比例函数的解析式.
(2)如果将等边△ABC向上平移n个单位长度,使点B恰好落在双曲线上,求n的值.
已知:如图,在平面直角坐标系中,直线AB与反比例函数y=(m>0)的图象交与点A(1,4)、B(a、b),q其中a>1.过点A作x轴的垂线,垂足为C,过点B作y轴的垂线,垂足为D,AC与BD相交于点M,连接CD.
(1)求该反比例函数的解析式;
(2)求证:CD∥AB.
如图,已知A(-4,0.5),B(-1,2)是一次函数y=ax+b与反比例函数(m<0)图象的两个交点,AC⊥x轴于C,BD⊥y轴于D.
(1)根据图象直接回答:在第二象限内,当x取何值时,一次函数大于反比例函数的值?
(2)求一次函数解析式及m的值;
(3)P是线段AB上的一点,连接PC,PD,若△PCA和△PDB面积相等,求点P坐标.
已知双曲线y=(k>0,x>0)与矩形ABCD,A(2,1)C(6,4)设双曲线与折线A-D-C交于E,与折线A-B-C交于F.
(1)写出B,D两点的坐标;
(2)k为何值时,双曲线与矩形有公共点;
(3)设△AEF的面积为y,当E,F分别在DC和BC上时,确定y与k之间的函数关系式,并确定k取值范围;
(4)当E,F分别在DC和BC上,且△AEF为直角三角形,求k的值;
(5)直接写出EF的最大值.
如图,直线和相交于点A,且分别与x轴交于B,C两点,过点A的双曲线()与直线的另一交点为点D.
(1)求双曲线的解析式;
(2)求△BCD的面积.
试题篮
()