如图,在正五边形ABCDE中,对角线AD、AC与EB分别相交于点M、N.下列命题:①四边形EDCN是菱形;②四边形MNCD是等腰梯形;③△AEN与△EDM全等;④△AEM与△CBN相似;⑤点M是线段AD、BE、NE的黄金分割点,其中假命题有( )
A.0个 B.1个 C.2个 D.4个
(第8题图)
在平面直角坐标系xOy中,已知动点P在正比例函数y = x的图象上,点P的横坐标为m (m > 0).以点P为圆心,m为半径的圆交x轴于A、B两点(点A在点B的左侧),交y轴于C、D两点(D点在点C的上方).点E为平行四边形DOPE的顶点(如图).
(1)直接写出点B、E的坐标(用含m的代数式表示);
(2)连接DB、BE,设△BDE的外接圆交y轴于点Q (点Q异于点D),连接EQ、BQ.试问线段BQ与线段EQ的长是否相等?为什么?
(3)连接BC,求∠DBC −∠DBE的度数.
如图,AB是⊙O的直径,点C在AB延长线上,点D在⊙O上,连接AD,BD,BO=BC=BD,OE⊥BD于E,连接AE.
(1)求证:CD是⊙O的切线;
(2)若⊙O的半径为4,求AE的长.
如图,M为线段AB的中点,AE与BD交于点C,∠DME=∠A=∠B=α,且DM交AC于F,ME交BC于G.
(1)写出图中三对相似三角形,并证明其中的一对;
(2)连结FG,如果α=45°,AB=,AF=3,求FC和FG的长.
如图,矩形 的四个顶点分别在菱形 的四条边上, .将 , 分别沿边 , 折叠,当重叠部分为菱形且面积是菱形 面积的 时,则 为
A. B.2C. D.4
如图,在正方形网格中,每个小正方形的边长均相等.网格中三个多边形(分别标记为①,②,③ 的顶点均在格点上.被一个多边形覆盖的网格线中,竖直部分线段长度之和记为 ,水平部分线段长度之和记为 ,则这三个多边形中满足 的是
A. |
只有② |
B. |
只有③ |
C. |
②③ |
D. |
①②③ |
如图,在平面直角坐标系中,直线AB与x轴,y轴分别交于点A(4,0),B(0,3).点C的坐标为(0,m),过点C作CE⊥AB于点E,点D为x轴正半轴的一动点,且满足OD=2OC,连结DE,以DE,DA为边作▱DEFA.
(1)当m=1时,求AE的长.
(2)当0<m<3时,若▱DEFA为矩形,求m的值;
(3)是否存在m的值,使得▱DEFA为菱形?若存在,直接写出m的值;若不存在,请说明理由.
如图,在△ABC中,D、E分别是AB、AC的中点,则△ADE与△ABC的面积比为 .
如图,在△ABC中,AD是角平分钱,点E在AC上,且∠EAD=∠ADE.
(1)求证:△DCE∽△BCA;
(2)若AB=3,AC=4.求DE的长.
在比例尺是1:8000的某市地图上,若一条路的长度约25cm,则它的实际长度约为______;对于地图上3cm×5cm的矩形广场相应的实际占地面积为_____平方千米.
如图,在矩形ABCD中,AB=3,AD=4,将此矩形折叠,使点D落在AB边上的点E处,折痕为FH,点C落在点Q处,EQ与BC交于点G,设AE=x,四边形EFHQ的面积为y,则y关于x的函数解析式是 .
如图,在Rt△ABC中,∠C=90°,翻折∠C,使点C落在斜边AB上某一点D处,折痕为EF(点E、F分别在边AC、BC上)
(1)若△CEF与△ABC相似.
①当AC=BC=2时,AD的长为 ;
②当AC=3,BC=4时,AD的长为 ;
(2)当点D是AB的中点时,△CEF与△ABC相似吗?请说明理由.
试题篮
()